高压下多硅白云母的拉曼光谱学研究

曹淑慧 张立飞 孙 樯 ,郑海飞 ,崔光来

(造山带与地壳演化教育部重点实验室,北京大学地球与空间科学学院,北京 100871)

摘 要:在金刚石压腔中,通过原位拉曼光谱研究了多硅白云母在常温高压下的稳定性。实验获得了多硅白云母从 常压到 20 GPa 的拉曼光谱数据,研究了多硅白云母的 266、708 和 3 618 cm⁻¹谱峰与压力的相关性。研究发现,多硅 白云母的 708 cm⁻¹谱峰随压力增加有规律地向高频方向偏移,与压力的增加呈明显的正相关性,即 y(拉曼位移, cm⁻¹)=0.523 8 x(压力, GPa)+712.31 相关系数 R²=0.965 6,并且该谱峰在压力 4.7 GPa 时消失,这可能与多硅 白云母中的 Si, AI 替代有关。羟基 3 618 cm⁻¹谱峰则随压力增加向低频方向移动,谱峰的降低与压力的增加呈明显 的线性关系变化(y=-0.340 2 x+3 617.8 R^2 =0.966 2),并且强度随着压力的增加也在逐渐减弱,在压力达 18 GPa 时开始消失,推测该压力可能为多硅白云母在常温下脱羟基的极限压力。

关键词:多硅白云母 高压 拉曼光谱 相变

中图分类号:P578.959;O433

文献标识码 :A

文章编号:1000-6524(2006)01-0071-06

A Raman spectroscopic study of phengite under high pressure

CAO Shu-hui, ZHANG Li-fei, SUN Qiang, ZHENG Hai-fei and CUI Guang-lai (MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Science, Peking University, Beijing 100871, China)

Abstract: Within the diamond anvil cell, the Raman spectroscopic study of phengite was developed at room temperature and under various pressures from 1 atmp to 20 GPa. The authors analyzed the correlation of the modes 266, 708 and 3 618 cm⁻¹ with the variation of pressure. The mode of 708 cm⁻¹ increases linearly with the increase of pressure, i.e., y (Raman shift, cm⁻¹) = 0.523 8x (pressure, GPa) + 712.31, and R²(correlation coefficient) = 0.965 6, and the mode disappears at 4.7 GPa as a result of substituting Si for Al. The mode of OH⁻ band and the intensity decrease linearly with the increase of pressure, i.e., y = -0.3402 x + 3617.8 and R² = 0.966 2, and the mode disappears at 18 GPa, which is assumed to be the maximum pressure for the dehydration of phengite at room temperature.

Key words: phengite; high pressure; Raman spectroscopy; phase transition

高温高压条件下含水矿物稳定性的研究是目前 实验岩石学研究的前沿领域。通常认为,含水硅酸 盐矿物在俯冲带温压条件下的脱水是地质流体的主 要来源,是造成火山作用、中-深源地震的主要原因 (Kirby *et al.*, 1996;Brown, 2001)。因此,这些含 水矿物高温高压条件下的实验数据对于建立含水矿 物相的热、动力学模型,探讨俯冲带中含水矿物的稳 定性,都具有重要意义。多硅白云母是俯冲带中最 主要的含水硅酸盐矿物,在化学成分上属介于白 云母KAl₂[AlSi₃O₁₀ [OH)₂和绿鳞石K(Mg,Fe²⁺)

收稿日期:2005-04-01;修订日期:2005-05-16

基金项目:国家自然科学基金资助项目(40325005 A0228003)国家 973 项目"中国西部大陆深俯冲作用的研究"课题资助(G1999075508) 作者简介:曹淑慧(1977-),女,硕士研究生 矿物学、岩石学、矿床学专业 通讯作者 张立飞 E-mail:lfzhang@pku.edu.cn。

(Al Fe³⁺ **]** Si₄O₁₀ **]** OH), 间的类质同像系列。多硅 白云母的分布十分普遍,从洋中脊玄武岩(MORB) 到泥质沉积岩等各种岩石中都可以出现,可能为俯 冲带深度从 110 km 到 300 km 主要的含 K 和含水 (羟基水)矿物相(Schmidt, 1996)。目前, 有关矿物 在高压条件下的拉曼光谱特征及其与压力间相互关 系的研究已成为矿物拉曼光谱学研究的重要方面, 特别是有关地球内部常见造岩矿物如辉石、橄榄石、 石榴石等的拉曼光谱研究(Chaplin et al., 2000; Lin, 2001; Chopelas et al., 2002)已开展了相当多 的工作。虽然白云母类矿物的结构和拉曼光谱学都 已有过深入的研究工作(Mckeown et al., 1999; Wang et al., 2002),但有关白云母类矿物在高压下 的拉曼光谱却一直没有开展深入研究,尤其国内至 今没有开展这方面的研究工作。本文首次利用金刚 石压腔 在室温条件下测定了多硅白云母从常压到 20 GPa 的拉曼光谱变化特征 探讨了多硅白云母在高压 下结构变化、羟基的稳定性及其可能的地质意义。

1 实验方法与装置

实验是在碳化硅压力腔体(Moissanite anvil cell) 中进行的(Sun *et al.* 2003)(图1)。实验垫片为0.2 mm厚的钛片样品孔直径为0.3~0.4 mm,是通过 电火花打孔(EDM)实验装置完成的。

图 1 碳化硅压砧示意图(引自 Sun Qiang 等(2003)) Fig. 1 Sketch map of moissanite anvil cell (from Sun Qiang *et al.*, 2003)

实验温度为 290 K 样品来自柴北缘榴辉岩中的 多硅白云母 经电子探针测定样品的化学成分,并将 其换算成化学式为 K_{0.692} Na_{0.051} Ca_{0.002}(Al_{1.568} Mg_{0.378}Fe_{0.107})(Al_{0.563}Si_{3.437})O₁₀(OH)₂。实验过程 中的压力是根据红宝石荧光 R1 强线的偏移确定的。 为了获得静态压力分布,实验中选用硅油(silicone fluid)作为压力介质(Ragan *et al.*,1996),在每次施 加压力进行拉曼光谱测试前,均保持实验装置恒定 1 min,以获得实验体系的静态压力分布。

拉曼光谱测试是在北京大学地球与空间科学学院的显微图像、物相分析教学实验室中的 Renishaw1000 共聚焦显微拉曼成像系统上进行的,光源为Ar⁺等离子激光,波长 514.5 nm,强度 25 mW,扫 描次数1,收集时间 20 s,光谱分辨率为±1 cm⁻¹。

2 实验结果与讨论

2.1 常温常压下的拉曼光谱

白云母的晶体结构如图 2 所示,其简正振动模 式为 28Ag+29Bg+28Au+29Bu 其中 ,Ag 和 Bg 为 Raman 活性, Au 和 Bu 为红外活性(Mckeown et al., 1999)。表1为50倍偏光显微镜下多硅白云 母、金刚石压腔中多硅白云母和理论计算白云母的 谱峰位置的对比数据(Mckeown et al., 1999)。可以 看出 ,196、267、376、427、708、1 094 和 1 124 cm⁻¹谱 峰分别与理论值的 193、272、380、440、702、836、 1097和1118 cm⁻¹位置处的谱峰位置大致一致,只 有 905 和 917 cm⁻¹与理论计算的 888 和 970 cm⁻¹ 位置谱峰差别较大。导致实测谱峰与理论谱峰不能 完全重合的原因可能是样品矿物成分与标样的矿物 成分有差异造成的。由于高压装置中上下压力顶砧 的影响,实验中只测试到266和708 cm⁻¹谱峰。此 外 还观测到了 3 618 cm⁻¹位置的 OH 峰(理论计算 值只给出较低波数位置的谱峰)。

Wang 等(2002)认为,600 cm⁻¹波数以下谱峰 振动与阳离子交换及较长波长的晶格振动有关,故 不能对266 cm⁻¹谱峰进行准确指认,600~800 cm⁻¹ 位置的谱峰为Si—O_{br}—Si 四面体伸缩和弯曲振动 所致,由于该区域的振动与晶格振动相分离,能直接 提供结构信息,且强度一般都很强,故很容易指认; 而800~1200 cm⁻¹以上的高波数谱峰振动是与硅酸 盐矿物四面体中Si—O_{nb}非桥氧的伸缩振动有关; 3 000~3 800 cm⁻¹区域为羟基的伸缩振动;涂培苍

表 1	常温常压下多硅白云母拉曼谱峰对比及
	谱峰指认 cm ⁻
able 1	Comparison of ambient Raman frequencies at

room temperature and pressure and mode assignment

	_		
理论计算	50 倍镜下	压腔中	振动模式
1 5	11/ 10/25	11 14	
36			
55			
83			
126			
177			
193	196		
214			
272	267	266	与晶格振动及阳
274			离子交换有关
304			
315			
380	376		
394			
440	427		
540			
568			
573			
659			
702	708	708	
754			及 M2—() 伸缩振动有天
820			
836	847		
888	905		
970	917		与 Si—O _{nb} 伸缩振动有关
1 023			
1 097	1 094		
1 118	1 124		
	3 618	3 618	与 OH 伸缩振动有关

等(1996)认为在整个硅酸盐系列的拉曼谱中,Si— O_{nb}的伸缩振动频谱在800~1250 cm⁻¹之间,Si— O_{br}—Si 的反对称伸缩加弯曲振动频谱在450~760 cm⁻¹之间,并随着[SiO₄]由孤立→二聚体→环→链 →层→架状结构的变化,Si—O_{nb}的伸缩振动由850 cm⁻¹逐渐增大到1250 cm⁻¹,而Si—O_{br}—Si 的弯曲 振动从760 cm⁻¹逐渐减少到467 cm⁻¹(石英)。最近McKeown等(1999)通过详细的拉曼分析和理论 计算,认为二八面体白云母的708 cm⁻¹谱峰除了具 有 Si—O_{br}—Si 四面体伸缩和弯曲振动模式外,还与 M2 位置 Al—O 桥氧键的伸缩振动有关。3 618 cm⁻¹位置为羟基的伸缩振动(Cliff *et al.* 2002)。

2.2 拉曼谱峰与压力的相关性

本实验是在常温条件下进行的,采集了压力从 常压到 20 GPa 多硅白云母的拉曼谱峰。从图 3a 可 以看出 随着压力的增加,266 cm⁻¹谱峰的位置没有 发生明显的变化;而 708 cm⁻¹谱峰则随压力增加向 高频方向发生偏移,且谱峰的强度逐渐减弱,逐渐变 得平缓,当压力到达约 3.6 GPa 时谱峰变得很弱,已 无法进行拟合,之后加压的过程中,平缓的 708 cm⁻¹ 峰仍然没有发生明显的可观测到的变化,直到 4.7 GPa 时消失;3 618 cm⁻¹谱峰随压力增加向低频方向 偏移(图 3b),这与 Holtzet等(1993)研究 2:1 型二八 面体矿物(白云母和珍珠云母)的羟基位置与压力呈 负相关是一致的。羟基峰随压力增加,强度也相应

图 3 多硅白云母高压下的拉曼光谱

Fig. 3 Selected Raman spectra of phengite as a function of increasing pressure at room temperature

有所变弱,在压力约 14 GPa 时,谱峰的峰形变得平 缓,强度也变得很弱,很难再进行拟合,压力到达 18 GPa 时,已看不到羟基峰;由图 3 可以看出:卸压后 266 cm⁻¹谱峰仍然能够还原(由于实验装置的限制, 卸压过程不能逐步进行,只能获得完全卸压后的实 验数据);而 708 cm⁻¹和 3 618 cm⁻¹谱峰能够恢复到 加压前谱峰的位置,说明谱峰的消失并不是非晶质 化引起,但其峰形不如加压前好,强度也不如加压前 强原因可能是卸压时间短,样品还未完全复原,也可 能是多硅白云母的结构发生部分调整,且该过程不是 完全可逆。在加压的整个过程中没有出现新谱峰。

为了具体地反映这种加压导致谱峰位置的变化 將拉曼谱峰进行高斯拟合,得到波数、压力数值 (表2),并绘成波数–压力关系图(图4)。

可以看到 3618 cm⁻¹谱峰随压力增加向低频方 向偏移,其拉曼偏移量与压力的相关性使用线性回 归较适合,如图 4a,拟合公式为 :y = -0.3402 x + $3617.8 R^2 = 0.9662$;如图 4b 所示,708 cm⁻¹谱峰 则随压力增加有规律地向高频方向偏移,与压力的 相关性通过线性拟合得到 :y = 0.5238 x + 712.31, 相关系数 R^2 为 0.965 6 ;266 cm^{-1} 谱峰随压力的增加 ,其波数并不发生大的变化 ,而是在 266 cm^{-1} 上下 波动(图 4c)。从图 4 可以看出在加压的整个过程中 3 个谱峰与压力的相关趋势都没有发生突变。

2.3 讨论

266 cm⁻¹位置谱峰与晶格的平动密切相关 (Mckeown *et al*.,1999),在加压过程中谱峰位置和 强度都没有发生大的变化,这表明多硅白云母在加 压范围内晶体结构没有发生大的变化。708 cm⁻¹谱 峰为 Si—O_{br}—Si 弯曲振动,随着压力增加向高频方 向线性变化,这与其他矿物如透辉石在室温下的金 刚石压腔中观测到的 Si—O_{br}—Si 振动是一致的 (Chopelas *et al*.,2002),表明随着压力的增加向高 频方向移动,与理论计算也是一致的。但在加压的 过程中,708 cm⁻¹谱峰在 3.6 GPa 时谱峰已经很弱, 无法拟合,在 4.7 GPa 时消失,消失后并没有新的谱 峰出现,且 266 cm⁻¹和 3 618 cm⁻¹谱峰的趋势也没 有发生突变,这说明在该处多硅白云母的结构对称 性(Si—O_{br}—Si 键)和含水性都没有发生明显的改 变,对此笔者的解释是多硅白云母在这样的压力条

表 2 不同压力下多硅白云母的拉曼谱峰

Gauss 函数拟合结果

Table 2 Gaussian data of selected Raman bands of

phengite	dependent	on	pressures	
----------	-----------	----	-----------	--

	红宝石波数	压力/GPa	$266 \ \mathrm{cm}^{-1}$	$3~618~{\rm cm}^{-1}$	$708 \ \mathrm{cm}^{-}$
1	5 034.2	0.29216	265.12	3 615.3	712.11
2	5 034.9	0.38512	265.65	3616.9	713.06
3	5 036.6	0.61088	267.2	3615.3	715.22
4	5 037.6	0.74368	267.43	3614.5	716.55
5	5 038.5	0.86320	266.88	3 615.5	717.17
6	5 040.1	1.07568	268.48	3615.1	718.6
8	5042.2	1.35456	267.08	3 612.5	721.31
9	5 048	2.1248	266.66	3 611.3	724
10	5 049.5	2.3240	267.96	3 611.9	724.46
11	5 0 5 0	2.3904	266.68	3 611	726.83
12	5 051.5	2.5896	266.7	3 609	725.74
13	5 052.6	2.73568	266.95	3 610.9	727.39
14	5 056.2	3.21376	266.95	3611.1	728.27
15	5 057.1	3.33328	266.72	3610.8	728.06
16	5 059.1	3.59888	266.68	3608.5	730.7
18	5 059	3.5856	266.87	3 607.1	51
20	5 061	3.8512	266.49	3604.7	
21	5 062.2	4.010 56	268.06		
22	5 063.9	4.23632	265.58	3 602.7	\bigcirc \lor
23	5067.1	4.66128	265.87		
24	5067.7	4.74096	266.9	3 599.8	
25	5 071	5.1792	266.64	3 596.7	V
26	5 073 5	5.511.2	266.31	3 598	
27	5 074.5	5.6440	265.28	3 591.8	
28	5 074.5	5.6440	267.8	3 597.6	
29	5 076.2	5.86976	266.64		
30	5077.2	6.002 56		3 593.7	
31	5079.7	6.334 56	267.34	3 594.1	
32	5 091.5	7.901 60	266.78	3 584.1	
33	5 112.2	10.65056	267.06	3 582.1	
34	5113.7	10.84976	266.84	3 582.3	
35	5124.6	12.29728	266.85	3 575.9	
36	5124.7	12.310 56	267.02	3 577	
37	5136.4	13.86432	266.84	3 573.1	
38	5137.4	13.99712	266.73	3 572.6	
39	5140.4	14.39552	266.76		
40	5 140.6	14.42208	266.35		
41	5 140.8	14.44864	266.13		
42	5145.3	15.04624	266.22		
43	5154.4	16.25472	266.01		
45	5 163.6	17.47648	264.1		
48	5168.2	18.087 36	266.58		
49	5 173.7	18.81776	265.96		
50	5 173.9	18.84432	265.76		
51	5174.5	18.924 00	266.43		
52	5174.6	18.93728	266.93		
53	5 175	18.99040	267.11		
54	5 178.1	19.40208	266.59		
55	5 184.1	20.198 88	266.46		

图 4 多硅白云母波数与压力的相关图

Fig. 4 Pressure dependence of the Raman modes of phengite

件下 M2 位置 Al—O 桥氧键中由于 Si⁴⁺ + Mg²⁺ = 2Al³⁺的替代发生较大程度的改变所致,这可能指示 实验样品多硅白云母中的 Si、Al 替代的最大限度。 据多硅白云母的实验研究,在 5.5 GPa 时,多硅白云 母中的 Si 含量为 3.65 pfu ;在 11 GPa 时,多硅白云 母 Si 含量为 3.81 pfu(Domanik et al., 1996), 在目 前实验压力为 4.7 GPa 条件下,多硅白云母中的 Si 含量至少应在 3.50 pfu 以上,但目前实验用样品的 Si 含量却只有 3.347 pfu 故 708 cm⁻¹谱峰消失。这 说明多硅白云母的 708 cm⁻¹谱峰可能具有压力变化 的指示意义。对于 3 618 cm⁻¹ 谱峰,在压力约 14 GPa 处, 谱峰的峰形变得平缓, 强度也变得很弱, 在 压力约 18 GPa 时(开始消失)该谱峰已看不到 表明 羟基开始脱离。但直到压力达 20 GPa 时也没有新的 谱峰出现,并且其间 266 cm⁻¹谱峰也没有发生明显 的变化,说明虽然多硅白云母在该处开始发生脱水 反应 ,但其整体的晶体结构和对称性都没有发生大 的变化。这表明 18 GPa 处可能为多硅白云母脱羟 基的极限压力。如果在一定的温度条件下,使得多 硅白云母的活化能增加,便会出现白云母由于脱水 而导致整个晶体结构发生相变,因此可以推断 18 GPa的压力可能是多硅白云母的极限压力,即在板 块俯冲带中,随着俯冲深度的增加,温度压力都在增 加的情况下,多硅白云母最大的稳定压力应低于 18 GPa。目前实验岩石学的研究表明,在俯冲洋壳中 (玄武岩 NCMASH 体系)多硅白云母的稳定上限由 反应(多硅白云母 = K-hollandite + 水)确定,这个反 应的斜率近于平行温度轴,其稳定压力在 10 GPa 左 右(Schmidt *et al.*,1998)。

3 结论

(1)实验测得了常温条件下多硅白云母从常压 到 20 GPa条件下的拉曼谱峰,在压力不断增加的过 程中各谱峰的变化特点为 :266 cm⁻¹谱峰峰形没有 发生明显的变化,谱峰位置围绕 266 cm⁻¹上下波动, 强度变化无明显规律性;708 cm⁻¹峰向高频方向有 规律地移动,强度逐渐减弱,峰形逐渐变差,且在压 力低于 4.7 GPa 的条件下,压力与波数呈明显的线 性相关性,其拟合公式为 :y=0.523 8 x+712.31 R² =0.965 6,可能是与多硅白云母中 Si, Al 替代有关, 因此可以进一步考虑作为多硅白云母压力的指示; 3 618 cm⁻¹谱峰随压力增加向低频方向移动,强度逐 渐减弱,峰的对称性逐渐变差,压力与波数相关性经 二次拟合得 :y= -0.340 2 x+3 617.8 R²=0.966 2。

(2)708 cm⁻¹谱峰与压力间具有明显的线性变 化关系,并在压力约为4.7 GPa 时消失,但在随着压 力增加并没有发现新谱峰的出现,表明是多硅白云 母中 Si、Al 替代所致;3618 cm⁻¹谱峰约在压力为18 GPa 时消失,直到压力到达20 GPa 也没有新谱峰出 现。在加压的过程中,虽然708 cm⁻¹和3618 cm⁻¹ 峰都消失了,但是266 cm⁻¹谱峰始终存在,且谱峰位 置和趋势都无大的变化,因此可以说明多硅白云母 并没有发生相变,还稳定存在。压力为18 GPa 时已 看不到羟基,说明该压力可能为脱羟基的极限压力。

致谢 本工作为国家自然科学基金资助 (40325005,40228003)和国家973项目的"中国西部 大陆深俯冲作用的探究"课题(G1999075508)联合资 助。工作中曾得到任景秋老师的帮助,在此致谢!

Reference

Brown M. 2001. From microscope to mountain belt :150 year of petrolo-

gy and its contribution to understanding geodynamics ,particularly the tectonics of orogens[J]. Journal of Geodynamics , $32:115\sim164$.

- Chaplin T D , Ross N L and Reynard B. 2000. A high-temperature and high-pressure Raman spectroscopic study of CaGeO₃ garnet[J]. Phys. Chem. Minerals , 27:213~219.
- Chopelas A and Serghiou G. 2002. Spectroscopic evidence for pressureinduced phase transitions in diopside J J. Phys. Chem. Minerals , 29:403~408.
- Cliff T , Johnston and Wang S. 2002. Novel pressure-induce phase transformation in hydrous layered materials[J]. Geophysical Research Letters , 29 , NO.0 ,10.1029.
- Domanik K D and Holloway J R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa : Implication for deeply subducted sediments J J. Geochimica et Cosmochimica Acta, 60(21):4133~4150.
- Holtzet M , Solin S A and Pinnavaia T J. 1993. Effect of pressure on the Raman vibrational modes of layered aluminosilicate compounds J]. Physical review , 48 312~317.
- Kirby S, Engdahl E R and Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs [J]. American Geophysical Union, 195~214.
- Lin C C. 2001. High-pressure Raman spectroscopic study of Co- and Niolivines J]. Phys. Chem. Minerals , 28 249~257.
- Mckeown D A , Bell M I and Edgar S E. 1999. Vibrational analysis of the dioctahedral mica :2M1 muscovite J]. American Mineralogist , 84 :1 041~1 048.
- Pan Zhaolu, Zhao Aixing and Pan Tiehong. 1994. Crystallography and Mineralogy M J. Beijing : Geological Publishing House(in Chinese).
- Sun Qiang , Zheng Haifei , Xu Ji 'an , et al. 2003. Raman spectroscopic studies of the stretching band from water up to 6 kbar at 290 K J]. Chemical Physics Letters , 379 : 427~431.
- Ragan D D and Clarke D R. 1996. Silicone fluid as a high-pressure medium in diamond anvil cells J J. Review of Scientific Instruments, 67 (2):494~496.
- Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted ocean crust J J. Science , 272 : 1 927~1 930.
- Schmidt M W and Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation[J]. Earth and Planetary Science Letters, 163:361~379.
- Wang A, Freeman J, Kuebler K E, et al. 2002. Raman spectroscopic characterization of phyllosilicates J. Lunar and Planetary Science XXXIII, 1 374.
- Xu Peicang , Li Rubi , Wang Yongqiang , et al. 1996. Raman Spectroscopic of Earth Science M]. Xi 'an : Science and Technology Press of Shaanx(in Chinese).

附中文参考文献

- 潘兆橹,赵爱醒,潘铁虹.1994.结晶学及矿物学[M].北京:地质 出版社.
- 徐培苍,李如壁,王永强,等.1996.地学中的拉曼光谱 M].西安: 陕西科学技术出版社.