陨石中铬尖晶石同某些铬铁矿床内铬尖晶石成分对比

中国地质科学院地质矿究所

都新华 黄耀民

本文主要通过謁石铬尖晶石和地球某些铬铁矿床中铅尖晶石成分之间的对比，结合一些实验资料，探讨它们的形成条件，以便对地球铬铁矿成因有进一步的认识。

一，试用陨石中铬尖晶石成分对地球铬

尖晶石成分进行标准化。对大量陨石矿物成分的研究 ${ }^{(7-11)}$ 表明，除顽辉石球粒陨石的铬元素呈陨辉铬矿 （ $\mathrm{FeCrS} \mathrm{S}_{4}$ ）外，在其它主要类型陨石中铬元素大都呈铬尖晶石形式出现。我们共收集了 111 个陨石的铬尖晶石化学成分并参考了 Bunch，T．E．所列举的各类䧑石中铬尖晶石的平均化学成分（表1）。在图1－A 中 这些平均化学成分变化范围都处于两条实线之间，而且H型球粒陨石中铬尖晶石的平均化学成分基本上位于这一范围的中心线附近。这样，H型球粒陨石中铬尖晶石的平均成分就可代表各类型陨石中全部铬尖晶石的平均

成分。
现在一般把 I 型碳质球粒陨石比作地球的母源物质。而普通球粒陨石中非挥发性元素的含量同 I 型碳质球粒陨石的相似。因为铬尖晶石的成分可以作为某些陨石和某些地球岩石形成条件的重要标志之一，因此为了便于对比研究，我们用H型球粒陨石中铬尖晶石的平均成分对肯皮尔赛，布什维尔德，大岩墙，斯提耳沃特及某些地区金刚石中的铬尖晶石成分（表1）进行标准化。为了消除各氧化物之间分子量的差别，以克分子量形式进行换算（图1—B）。从图上可以看出，与球精陨石的铬尖晶石相比，含铬铁矿岩体中铬尖晶石的 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 含量基本相同或略 显 贫化，而〔 FeO 〕， TiO_{2} 及 MnO 则贫化较强，以 $\mathrm{TiO}_{2}, ~ \mathrm{MnO}$ 尤为显著。相反， $\mathrm{Al}_{2} \mathrm{O}_{3}$ 和 MgO富集，其中 MgO 更为明显。肯皮尔赛岩体中铬尖晶石比层状岩体的铬尖晶石更贫〔 $\mathrm{FeO} 〕$

表 1 各类陨石中铬尖量石平均化学成分，地球某些地区金刪石中及铬铁矿床中的铬尖晶石化学成分
Table 1 The average chemical composition of chrome spinels in the various meteorites and that in the diamonds and the chromite deposits
in some areas of the earth

	$\mathrm{C}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	FeO	MnO	MgO	CaO	TiO_{2}	$\mathrm{~V}_{2} \mathrm{O}_{3}$	ZnO	SiO_{2}	NiO	CoO	总和
1	55.5	10.1		28.8	0.68	3.9		1.09	0.43	0.05				100.55
2	48.9	9.3		35.7	0.59	0.59		4.1	0.75	<0.02				99.93
3	46.1	9.8		36.5	0.54	2.86		3.7	0.28	<0.02				99.97
4	56.9	5.9		31.2	0.94	2.66		2.33	0.68	<0.02				100.61
5	52.0	11.5		31.0	0.77	2.29		1.84	0.54	<0.02				99.96
6	64.0	5.6		23.2	0.65	5.8		0.18	0.54	<0.02				99.97
7	71.3	0.84		14.0	2.51	8.9		0.46	0.43	1.69				100.13
8	61.1	3.23		31.2	0.41	0.54	0.26	0.09		2.38	0.29			99.5
9	61.7	3.29		31.4	0.45	0.49	0.38	0.09		2.60	0.43			100.9
10	67.2	5.12		14.5	<0.04	14.2	0.02	0.12		0.04	0.13			101.3
11	65.4	5.91		10.5	<0.04	16.4	0.05	<0.01		<0.01	0.26			98.6
12	64.0	5.94		15.1	<0.04	13.8	<0.01	0.03		-	0.23			99.1
13	63.3	6.74		14.4	<0.01	14.4	0.01	0.05		-	0.26			99.16
14	63.3	7.02		11.2	0.25	14.0		0.09			0.09			98.35
15	65.8	3.20		13.3	0.27	12.7		0.31			0.14			100.02
16	61.28	8.35	2.33	10.77	0.12	15.79	0.00	0.15			0.40			99.19
17	56.42	10.58	2.69	16.92	0.25	12.28	0.00	0.18	0.14		0.54	0.08	0.13	100.21
18	44.66	21.49	2.14	16.93	0.22	13.27	0.00	0.16	0.18		0.49	0.09	0.13	99.76
19	47.12	19.11	2.30	18.86	0.15	11.21	0.02	0.62			0.29			100.28
20	41.55	20.92	7.09	18.47	0.21	11.08		0.49			0.29			100.2
21	57.24	12.07	6.76	8.88		14.38		0.37						99.7
22	51.02	12.47	10.31	14.33		11.48		0.34						99.95
23	42.3	19.0	6.9	23.6		8.0		1.40						101.2
24	47.5	12.22	0.10	25.12	0.10	11.45	0.21	0.85			1.42			98.97

 （据Соболев Н．В．идр．1975；16—18—肯皮尔赛岩体中（据Павлов H．B．пдрр．1969，16—程密漫染状铬铁矿，17—含矿岩石组合中纯橄岩，7个样平均，18—橄柂岩，4个样平均）；19－20—美国斯提耳沃特岩体中 （据豪兰，A．L．，1955）；21－22—大岩垎哈特累区（据Worst，B．G．，1958）；23－24—南非布什维尔德岩体。

但 MgO 及 $\mathrm{Al}_{2} \mathrm{O}_{3}$ 则 较高。有趣的是，在大部分地区的金腩石中，铬尖晶石的 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 含量比球粒陨石的铬尖晶石 稍 富， MgO 显 著增高， $\mathrm{Al}_{2} \mathrm{O}_{3}$ 大体近似，而［ $\mathrm{FeO} 〕, ~ \mathrm{TiO}_{2}$ ，及 MnO 则较贫，尤以后二者比较明显。因此金刚石中的这种铬尖晶石与铬铁矿床中的铬尖晶石类似。但是非洲塞拉利昂金刚石中的

铬尖晶石成分比较特殊，其中 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 及 $[\mathrm{FeO}\}$含量与球粒隄石的铬尖晶石 大致相同，但 MgO 及 $\mathrm{Al}_{2} \mathrm{O}_{3}$ 稍低。除 TiO 及 MnO 显 著 贫 化外，该种铬尖晶石的其它成分与球粒隄石中铬尖晶石成分近位。

总之，如果把球粒陨石的铬尖晶石比作铬尖晶石的母岩，那么地球含铬铁矿岩体中

的铬尖晶石就是业已发生演化的产物。

二，陨石中铬尖晶石和某些铬铁

矿床中铬尖晶石的成分对比。为了便于比较，采用了白文吉 （1982）及巴甫洛夫（1979）换算方法对陨石的铬尖晶石化学成分作了计算，前一种方法比较简便，而后一种方法考虑了钛以类质同像进入尖晶石晶格，故把钛并人三价阳离子中，作为钛尖晶石 $\left(\mathrm{Fe}_{2} \mathrm{TiO}_{4}\right)$ 组 份。这不仅符合地球张铬尖晶石特征，而且也适合于陨石铬尖晶石的实际情况。 Bunch，T．E．等 ${ }^{(11)}$ 证实了陨石中铬尖晶石的 TiO_{2} 含量在一定程度上反映了铬尖晶石形成条件。因为隄石中铬尖晶石及与其对比的岩体中铬尖晶石的 TiO_{2} 含量较少，故按两种换算法所得结果基本一致。我们采用白文吉的图解法将相应的数据表示在图 2 及图 3中。

虽然代表各类陨石中的铬尖晶石成分的投影点数量不同，但它们在上

图 1 A —陨石中䂏尖晶石平均化

学成分变化倩况

Fig． 1 A－The variation of the average chemical compositions of chrome spinels in the various meteorites 1—变化范围；2—H型球粒陨石中 （据 Bunch，T．E．et al．1971） B—用H型球粒婘石中铬夹晶石标准化了的某些铬铁矿床中及金㣚石中铬尖晶石成分
B－H－type chondrite normalized main elements patterns of the chrome spinels in the chromite and diamonds for some deposits of the earth
1—陨石的铬尖晶石标准线；2，3，4—分别为背皮尔憲岩体中秱密漫染状铬铁矿，含矿岩石组合内纯橄岩中，橄橙岩中；5—大岩墙岩体中；6—斯提尔沃待岩体中；7－布什维尔㢈爱体中；8－10—金侧石中（8—委内瑞拉及非洲加纳 4 个样平均； 9—非洲塞拉利昂 2 个样平均；10—据Соболев H．B． 2 个样平均）

述图上均有一定的分布范围。这表明陨石中铬尖晶石成分的变化具有共同的特点。如将陨石按其基性程度增加的顺序排列，则依次为易变辉石－斜长石的无球拉陨石（富钙的），中铁隄铁（由辉石，斜长石及铁镍组成），古铜辉石的无球粒陨石（贫钙的），橄榄陨铁 （由橄柂石及铁镍组成）以及铁陨石（ Fe 90.50% ，Ni 8.70% ）。按这一顺序，陨石中铬尖晶石的 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 及 MgO 逐渐增高， $\mathrm{Al}_{2} \mathrm{O}_{3}$及〔FeO〕逐渐降低。然而铁陨石的铁镁质硅酸盐包体中的铬尖晶石成分变化却很大，这可能反映它们的形成条件比别的陨石中铬尖晶石变化大。普通球粒陨石中铬尖晶石成分点的分布区虽然较特殊，但也可见其由陨石低铁类（LL 型）向高铁类（（H 型）变化

图2 各类䧑石中及地球金腩石中铬尖晶石成分变化情况（据白文吉图解法，1982） Fig． 2 The variation of chemical compo－ sition in the chrome spinels for various meteortes and some diamonds of the earth．（after Bai Wenji diagram 1982）曲线示成分变化范围，各种形态符号为平均成分点。1—古铜辉石无球粒陨石；2—易变辉石－斜长石的无球粒䧑石；3—滧杪陨铁；4—中铁顾铁，5—镁楼機石无球柆陨石；6—铁陨石的徍酸盐包体，7－球柆限石（（1），（2），（3）分别为 H, L 及LL型）；8－10－金刚石中 $(8.9$ 据Meyer， Н．О．A．et al．，1972， 10 据Соболев Н．В．и др，1975）

时，铬尖晶石中的铬和镁则增高。看来，铬在陨石中富集规律与在地球岩石中富集规律大体是相同的，即基性程度愈高的陨石，其铬尖晶石愈富含铬和镁。

如果按巴甫洛夫分类，隐石中铬尖晶石以铁铬铁矿一富铁铬铁矿为主，而地球铬尖晶石则以铁质镁质铝铬铁矿一富铁铝铬铁矿一富铬尖晶石为主。按白文吉分类，前者以铁质一镁铁质铬铁矿为主，而后者则属于镁铁质铬铁矿一铝铬铁矿一铬尖晶石。

陨石中铬尖晶石成分的特点是含铬量接近于理想的铬铁矿成分 $\left(\mathrm{FeCr}_{2} \mathrm{O}_{6}\right)$ ，如在铁陨。石中。陨石的铬尖晶石一般不含 $\mathrm{Fe}_{2} \mathrm{O}_{3}$ ，仅在计算时有少许 $\mathrm{Fe}_{2} \mathrm{O}_{3}$ 出现，其含量也在 3%以下。此外，除橄榄陨铁及铁陨石外，一般

图3 某些铬铁矿床中铬尖晶石成分变化模式（据白文吉图解法，1982）
Fig． 3 The models of variation in the chrome spinel chemical composition of some chromite deposits．（after Bai Wenji diagram，1882）
1—其中 1.2 相应为肯皮尔赛主矿田内副生及造矿的铬尖畠石；2—其中1．2相应为齿皮尔察其它劯区内副生及造矿的铬尖毘石；3—布什维尔德岩体中；4－大岩堿岩体中；5－斯提耳沃特岩体中

含 TiO_{2} 较高，约在 $1-4 \%$ 之间。但极个别易变挥石一斜长石的无球粒陨石中铬尖晶石含 TiO_{2} 量高达 10.1% 及 17.6% ，据Bunch， T ． E．${ }^{[11]}$ 研究，这可能同冲击变质有关。相比之下，上述岩体的铬尖晶石中 TiO_{2} 一般小于 1% 。这也是地球铬尖晶石与陨石铬尖晶石的不同之点。

同地球铬铁矿床的铬尖晶石一样，陨石铬尖晶石中 Cr 和 Al 之间类质同象代替现象也很显著， $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 和 $\mathrm{Al}_{2} \mathrm{O}_{3}$ 常呈较稳定的反比关系。中铁陨铁，古铜辉石无球粒陨石及铁陨石中铬尖晶石在成分上显示出随 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 含量增高而 $\mathrm{FeO} / \mathrm{MgO}$ 比值堿少的趋势。这一点类似于层状含铬铁矿岩体中铬尖晶石。而易

变辉石－斜长石无球粒陨石，球粒陨石及橄柣陨铁中的铬尖晶石则即使 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 含量增高， $\mathrm{FeO} / \mathrm{MgO}$ 值仍保持不变，这与蛇绿 岩 型岩体中的铬尖晶石颇为近似。

非洲塞拉利昂金刚石中的铬尖晶石成分为铁铬铁们，而其它地方金刚石中的铬尖晶石则为镁质铬铁矿。

为了阐明铬尖晶石成分中主要组份之间的关系，我们采用了巴甫洛夫方法中几个辅助数值特征进行对比。如含铁系数 $\mathrm{f}=\mathrm{FeO}$ ．

图 4 阿石（压部），地球金戍石及某些铬铁矿床（右部）中铬尖晶石的总含铁系数（f），含铬系数（ φ ）同含蛒端元矿物中含铁系数（ $\mathrm{for}_{\mathrm{or}}$ ）之间关系比较

Fig． 4 Comparing the coefficient in the chrome spinels variation of the sum of ferrous（ f ），the chromium（ φ ）and the ferrous is the chromiunh end thember （ f_{o} ）between the meteorites（the left） and the earth diamond，some earth chro－ mite deposites（the right）．

1．2．3——分别为肯皮尔泰岩体中椆密浸染状铬铁矿，含矿岩石组舍中纯阵営及棷榄岩内副生铬尖晶石；4—布什维尔徳岩体中；5—大岩堷岩体中；6—斯提耳沃待岩体中。其它唄侧同图2
$100 /(\mathrm{FeO}+\mathrm{MgO})$ ，含铬系数 $\varphi=\mathrm{Cr}_{2} \mathrm{O}_{3} \cdot$ $100 /\left(\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ 及铬端元矿物分子的含铁系数 $\mathrm{f}_{\mathrm{Cr}}=\mathrm{FeCr}_{2} \mathrm{O}_{4} \cdot 100 /\left(\mathrm{FeCr}_{2} \mathrm{O}_{4}\right.$ $+\mathrm{MgCr}_{2} \mathrm{O}_{4}$ ）。各类陨石，地球含铬铁矿岩体及金刚石中的铬尖晶石的 f 同 $\mathrm{f}_{\mathrm{crv}} \varphi$ 同 f_{cr} 之间的关系分别表示在图4上。

从图4可以看出，含斜长石陨石中铬尖晶石的 f_{Cr} 保持稳定，不随着 f 及 $\varphi_{\text {变化而变 }}$化。其余陨石中铬尖晶石的 f_{Cr} 同 f 成正比关系，但同 φ 为反消长的近线型关系。地球铬尖晶石的 f_{cr} 同 $\mathrm{f}, ~ \varphi$ 乙间也呈类似线型觟势关系。而且从布什维尔德，斯提耳沃特，大岩墙到肯皮尔赛，岩体基性程度愈高，则 $\mathrm{f}_{\mathrm{cra}}$ f 值会低，而 φ 值愈高。肯皮尔赛岩体中由橄榄岩到纯橄岩再到稠密浸穼状铬铁仢石， f_{c} ， f 值变小而 φ 值变高。这一现象同陨石中的铬尖晶石相似。这表明各类陨石之间有成因联系，陨石中铬富集和地球内铬富集成铬尖晶石的机理是基本一致的，即起始物质熔融分异时在较基性部分（如陨石中铁隄石的铁镁质硅酸盐包体及橄榄陨铁，而超镁铁岩内纯橄岩及铬铁矿石）中的铬尖晶石是以 f_{Cr} 值低为特征的。

三，䧈石中铬尖晶石和地球超镁

铁岩中铬尖晶石形成条件的对比。同地球铬尖晶石一样，陨石中的铬尖晶石成分特征取决于其形成的介质成分，温度，压力，氧逸度及冷却速率等因素。

陨石中铬尖晶石成分特征和各类陨石物质成分有密切关系，正如图 2 所表示的 那样。与超镂铁岩中铬尖晶石相比，陨石中铬尖晶石高铁和低镁很可能是由于陨石中含大量铁。另外陨石中的铬尖晶石常同斜长石共生 ${ }^{[8]}$ ，因此初始的 $\mathrm{Al}_{2} \mathrm{O}_{8}$ 主要是加入斜长石中而不是加入铬尖晶石中，所以陨石中的铬尖晶石含铝少。这点与布什 维尔德岩体内辉

长岩副生铬尖晶石比古铜辉石副生铬尖晶石，科马提岩铬尖晶石比其它超铁铁岩铬尖晶石皆含 $\mathrm{Al}_{2} \mathrm{O}_{3}$ 少而较富含 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 是相似的。

根据铁陨石中的铬尖晶石和橄塂石计算出的形成温度为 $1154-13359^{\circ} \mathrm{C}^{[10]}$ 。这同橄塂陨铁中的铬尖晶石和噉㭠石所计算出的形成温度（1143－1359 ${ }^{\circ}$ C）非常吻合 ${ }^{[11]}$ 。吉林球粒䧑石橄秵石内玻瑜包裹体均匀化温度为 $1050-1200^{\circ} \mathrm{C}^{[4]}$ 。这说明陨石中的铬尖晶石是在高温下形成的。有关实验表明，在氧逸度稳定时，铬尖晶石的铬含量随其结晶温度降低而减少，但铁含量则相应增高 ${ }^{[13)}$ 。因此可以推测，由铁陨石向易变辉石一斜长石的无球粒陨石，其中铬尖晶石的铁和铬含量变化的趋势线是沿降温方向演变的（图2）。温度可能是隄石中的铬尖晶石成分变化的主要控制因素。这同超镁铁岩中铬尖晶石的 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 增加， $\mathrm{FeO}, ~ \mathrm{Al}_{2} \mathrm{O}_{3}$ 减少及 Mg O增高是温度趋势（液相线）变化标志 ${ }^{[22]}$ 是一致的。

陨石物质和地球超镁铁岩中的铬含量差别很小，如 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 平均含量 ${ }^{[5]}$ 在 I 型碳 质 球粒陨石中为 0.34% ，古铜辉石球粒陨石中为 0.42% ，而来源于地慢的超様铁岩中为 $0.40-0.45 \%$ 。另外，陨石中铬尖晶石的 $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 含量比地球岩体的富或相近。但是陨石中的铬尖晶石却不像超镂铁岩中铬尖晶石那样可富集成一定品位的铬铁矿矿石。看来，这与它们的降温结晶过程不同有关。陨石物质冷却速率是很缓慢的（ $1-10^{\circ} \mathrm{C}$／百万年），比地球内降温过程还低一个到两个数量级 ${ }^{[10]}$ 。Лaпии B． $\mathrm{B}^{[18]}$ 对肯皮尔赛瘤状铬铁矿的熔融实验说明，在不含挥发份情况下，在液相线温度以上，如过热程度较高的熔浆快速结晶，就会形成以铬尖晶石为主 （ $60-80 \%$ ），间有少量橄榄石 的矿物相和残余硅酸盐物质；如熔浆过热程度较低，且恒温的时间延续很长，就主要结晶出硅酸盐 （橄榄石 $80-90 \%$ ）及少量铬尖晶石。看

来，隄石中铬尖晶石及超镁铁岩中副生铬尖晶石降温结晶情形类似于后一种，而铬铁矿矿石形成时的降温条件似与前一种情况相近。

铬尖晶石的化学成分在一定程度上可作为矿物形成的压力指示剂。如富含铬的地球铬尖晶石是来自上地幔的较深部位，而较富含铝的铬尖晶石则来自上地慢的较浅部，即一般随压力降低，铬尖晶石中 $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Ct}_{2} \mathrm{O}_{3}$比值增高 ${ }^{[15]}$ 。从图 3 可以看出，肯皮 尔 赛岩体中主矿田的铬铁矿是在比其它矿区铬铁矿及层状岩体中铬铁矿高的压力下形成的。但从图2也可以看出，陨石中䈃尖晶石的 $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}$ 比值由铁院石经磉樜陨铁，球粒陨石直至无球粒陨石依次增加。看来，这是由于从铁缋石至无球粒陨石铬尖晶石形成时的压力渐次降低的结果。虽然陨石和含铬铁呋岩体中的铬尖晶石内 Al / G r比值变化趋势是相似的，但是二者的铬尖晶石所形成的压力却有很大差别，如推测所知，普通球粒陨石形成的压力约 10^{-5} 大气压 ${ }^{(16)}$ ，而地球超镂铁岩的约 $15-25$ 千巴 ${ }^{〔 23]}$ 。

熔浆的氧逸度（ $\mathrm{f}_{\mathrm{O}_{2}}$ ）的大小对铬尖晶石稳定性及成分也有决定性的影响。这已被有关实验所证实。Hill，R．et al．（1974）实验表明，在 1 大气压及 1200° 时，随 $\mathrm{f}_{\mathrm{O}_{2}}$ 增高，玄武岩熔浆中结晶出来的铬尖晶石的含铬量減低，而总铁量则增高。Лапив B．B． （1979）${ }^{\text {（199）}}$ 在 1 大气压下对 $\mathrm{MgO}-\mathrm{Cr}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$系统加入挥发份 $\left(\mathrm{H}_{2} \mathrm{O}, ~ \mathrm{CO}_{2}, ~ \mathrm{~F}_{2}, ~ \mathrm{NH}_{4} \mathrm{Cl}\right)$ ， $\mathrm{Al}_{2} \mathrm{O}_{3}(2-10 \%)$ 及 $\mathrm{FeO}(10-20 \%)$ 配料的实验中进一步说明，在无缕冲剂时，该系统的熔融温度及铬尖晶石稳定区实际上都没有变化，而当采用缓冲剂时，在 $\mathrm{f}_{\mathrm{O}_{2}}$ 为 10^{-6}－ 10^{-10} 大气压下该系统熔票温度则由1730— 1770° C降到 $1550-1570{ }^{\circ} \mathrm{C}$ 。另外，随着 f_{o}由 10^{-3} 降低到 10^{-6} 大气压时，橄笕石一铬 尖晶石共结线就向铬尖晶石稳定区位移。

如推测含铬铁矿超铐铁岩是在1150— $1400{ }^{\circ}$ C及 $\mathrm{f}_{\mathrm{O}_{2}} 10^{-6}-10^{-10}$ 大气压下结晶的 ${ }^{[20]}$ ，那么，陨石中不含 $\mathrm{Fe}_{3} \mathrm{O}_{3}$ 的铬尖晶 石 则是在较还原条件下形成的。铁陨石中的铬尖晶石与其他类型陨石中的铬尖晶石相比，其成分变化最大，这很可能与其形成的温度和 fo_{2} 差别较大有关。

最后应该指出，陨石中铬尖晶石比上述岩体中铬尖晶石形成早得多。含铬尖晶石的陨石中硅酸盐包体同位素年龄一般为 $44-46$亿年 ${ }^{[10]}$ ，而布什维尔德和大岩墙同 位 素 年龄为 $19-21$ 亿年，斯提耳沃特为 20 亿年，肯皮尔赛岩体边部橄塂岩中白云母同位素年龄为 4.04 ± 0.18 亿年。

四，小 结

总的说来，同地球某些岩石一样，陨石的铬尖晶石成分可作为区分陨石类型的重要标志。而且各类陨石中铬尖晶石成分变化情形同地球蛇绿岩中及层状镁铁－超锇铁岩中铬尖晶石成分变化模式相似。这就表明陨石和地球的原始物质在成分上是一致的。

各类陆石的铬尖晶石成分呈有规律的变化也表明这些䧑石具有共同的演化特点。陨石的起始物质可能是不均匀的或具原始的分异。如从分异的观点来看，由铁陨石向易变辉石－斜长石无球粒陨石的趋势线上，陨石的母体在逐渐降温及氧逸度逐渐增高时分异出基性物质到酸性物质。这种分异方式和地球原始物质的总分异过程是一致的。

H 型球粒陨石中的铬尖晶石平均成分可以代表各类陨石中的铬尖晶石平均成分。它可以用于对地球铬尖晶石成分进行标准化。与某些铬铁矿床中铬尖晶石相比，陨石中铬尖晶石成分之所以特殊，就是因为它们具有与前者不同的形成条件：含铁较多的介质，极低压及强的还原条件，很缓慢的冷却结晶。

陨石和地球的铬尖晶石，其含铬端元们

物分子的含铁系数随着起始物质分异的加强而有规律地减小。因此超镁铁岩的铬尖晶石中 $f_{c r}$ 值的大小可以反映岩浆分异程度。 $f_{c r}$值㥐小，其分异燴好，因而有利于形成铬铁矿。

在完成本文过程中得到白文吉，颜秉刚等同志帮助，在此一并致谢。

主票参考文献

〔1〕白文吉：1982，铬尖腮石类矿物化学成 分变异俦征及其地质斿义，中国地质科学院地质研究所所刊，№．5，地质出版社。

〔2〕王炳照；1982，应用多变量统计分析 对找国铬铁矿床的铬尖晶石化学成分的研究，中国数质科学院地质研究所所刊，ND．5，地质出版徍。

〔3〕陈正：1979，言林陨石雨的合眤矿物及其组构特征初歩研究，吉梑陨石雨论汶集，科学出服社。
［4］卢焕毫等：1979，吉林䧑石中包囊体的初》步砰究，吉林顾石雨论文集，科学出版社。

〔5〕威利 P．J．：1971，朱更等译，1978，动力地球学，地质出䖊社。

〔6〕林伍瞴 A．E．：1975，杨美嫥等译，19 81，地梫的戌分与岩石学，地质出版社。

〔7〕 Bunch T．E．，Keil K．，Snetsingg r K． G．：1976，Chromite composition in relatic？to chemistry and texture of ordinary chondrites． Geochimica et Commochimica Acta，Vol．31，p． 1569 －1582．
［8］Paul Ramdohr：1967，Chromite and chromite chondrulus in meteorites－I．Geochimica et Cosmochimica Acta，Vol．31，p．1961－1967．
［9］Snetsinger K．G．，Keil K．，Bunch T．E．： Chromite from equilibrated＂chondrites．
［10］Bunch T．E．，Keil K．，Olsen E．：1970， Mineralogy and Petrology of silicate inclusions in izon meteorites．Contributions to Mineragy and Petrology，Vol．25，No． 4.
［11〕 Bunch T．E．，Keil K．：1971，Chromite and ilmenite in nonchondritic meteorites．The American Mineralgist，Vol．56，No．1－2，P．146－ 157.

〔12〕 Meyer H．O．A．，Boyd F．R．；1972，Com
position and origin of crystalline in lusions in natural diamonds．Geochimica et Cosmochimica Acta．Vol．36，p．1255－1273．

〔13〕 Hill R．，Roeder Y．s The crytallization of spinel from basaltic liquid as a funtion of oxygen fugacity．Journal of Geology，Vol．82，No．6．

〔14〕 Acculus R．G．，Osborn E．F．：1974－ 1975 Washington D．C．1975，Phase relations in the system $\mathrm{MgO}_{\mathbf{g}}$－Ironoxide－ $\mathrm{Cr}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ ．Carnegie Inst．Annual Report of the Director Geophisical Laboratory，p．507－512．

〔（15〕 Haggerty S．E．1979，Spinels in high pressure regimes．The Mantle Sample：Inclusions in kimberlites and other volcanics，p．183－196．

〔16〕 Edward Arders et al．：1973， Organic Compounds in Metcorites Science，Vol． 182，No．4114，p． 781.

〔17〕 Павдов Н．В．，Григорьева И．И．， Гришана Н．В．：1979，Ооразование и гене－ тические типы хромитовых месторождений геосинклинальных областей．В кн．：усло－ вия образования магматических рудних месторождений．АНСССР М．＂Наука＂с．5－ 78.
［18］Jaпие B．В．，Овсянвакова Н．В．， Грпикна Н．В．я 1979，Эксперименты по

хромитообразованию в системе $\mathrm{MgO}-\mathrm{Cr}_{2} \mathrm{O}_{3}$－ SiO_{2} с добавками окислов железа и алюм иния．В кн． Усдовия образования магмати－ ческих рудных Месторождений．АНСССР М．＂Наука＂с． 127.

〔19〕 Jапин В．В．，Соловова И．П．： 1979，Новые экспериментальные данные по－ проолеме генезиса хромитов．В кн．：Усло－ вия образования магматических рудных． месторождений．АНСССР М．＂Наука＂с． 146.

〔20〕 Гепкин А．І．，Пистлер В．В．， Лапустина И．П．：1979，Хромитовая мине－ рализация дифференцированных трапповых интрузий и условия её образования．В кн．я Условия обрязования магмятаческих руд－ ных месторождевии．АНСССР М．＂Наука＂ c． 105 ．
［21］Приходько В．С．：1980，Варпащир составов хромшпинелидов и их значение－ для петрологии ультрабазитов．Геология и геофизика．＂Наука＂Спб．отд．№ 7.

〔22〕 Глазунов О．М．：1981，Геохимая ви рудоносноств габброидов и гишербазитов． ＂Наука＂Сиб．отд．

The Comparison of the Chrome Spinels Composition between Meteorites and the some Chromite Deposites

Zhen Xinhua，Huang Yaomin

Abstract

By way of comparing the composition of meteorite chrome spinels witb the chrome spinels in some chromite deposits may raise the understanding of the genesis of the earth chromite．The average composition of chondrite chrome spinel can represent that of all sort meteorites，hence it can be used as a standard for the earth chrome spinels．The characteristic of the composition of meteorite chrome spinels is related with the high ferrous medium，extremily low pressure，reducing condition，as well as undergone a very slow process of cooling and crystallization．The variation of the chemical composition of chrome spinels in the various meteorites is similar to that of the main kind of earth

（上接第209页）

at a depth of about $50-100 \mathrm{Km}$ ．
chromite deposits（i．g．ophiolite type and layer）．The coefficient of the ferrous in the chromium end member indicates the better differentiation of the begin ning substante．

