新疆东准噶尔苏吉泉铝质 A 型花岗岩的确立 及其初步研究

苏玉平^{1,2} 唐红峰¹ 刘丛强^{1,3} 侯广顺^{1,2} 梁莉莉^{2,3}

(1. 中国科学院 地球化学研究所 ,贵州 贵阳 550002 ;2. 中国科学院 研究生院 ,

北京 100049;3. 中国科学院 地球化学研究所 环境地球化学国家重点实验室,贵州贵阳 550002)

摘 要:新疆东准噶尔卡拉麦里地区是一个重要的锡成矿带,分布有多种类型花岗岩,其中黑云母花岗岩长期以来 被认为是S型花岗岩。本文研究表明,苏吉泉黑云母花岗岩富集 Rb、K 等大离子亲石元素及 Zr、Hf 等高场强元素, 其 FeO*/MgO和10000 Ga/AI值大,明显不同于典型的 I 型和 S型花岗岩,属于典型的铝质 A 型花岗岩。锆石的 LA-ICP MS U-Pb 定年结果显示其形成时代为 304±2 Ma,比该区钙碱性花岗岩侵位晚,而与碱性花岗岩形成时代相 近。这些黑云母花岗岩具有高 eNd(t)的同位素特征,但它们不是直接来源于亏损地幔,而更可能是源自地幔且被深 埋的年轻地壳物质部分熔融和结晶分异作用的产物。花岗岩微量元素构造判别图显示它们是一种后碰撞花岗岩, 标志晚石炭世卡拉麦里地区造山作用的结束和板内构造演化的开始。 关键词:铝质 A 型花岗岩,锆石 U-Pb 年代,洁石成因,卡拉麦里,东准噶尔 中图分类号:P588.12⁺¹1,P542 文献标识码:A 文章编号:1000-6524(2006)03-0175-10

The determination and a preliminary study of Sujiquan aluminous A-type granites in East Junggar, Xinjiang

SU Yu-ping^{1,2}, TANG Hong-feng¹, LIU Cong-qiang^{1,3}, HOU Guang-shun^{1,2}and LIANG Li-li^{2,3}

 Institute of Geochemistry, CAS, Guiyang 550002, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002, China)

Abstract: Several types of granites are distributed in Karamaili area of East Junggar, Xinjiang, which constitutes an important tin metallogenic zone. Biotite granites there have long been thought to be of S-type. Nevertheless, the study conducted by the authors shows that biotite granites in Sujiquan are actually typical aluminous A-type granites characterized by enrichment of LILE (such as Rb, K) and HFSE (such as Zr, Hf) as well as high FeO^{*}/MgO and 10 000 Ga/Al ratios. These features are obviously different from those observed for I- and S- type granites. Zircon U-Pb dating by LA-ICPMS shows that they were emplaced at about 304 \pm 2Ma, close to the formation time of alkaline granites but later than the emplacement of calc-alkaline granitoids in this area. Although these biotite granites possess high ϵ Nd(t) values, they were not derived directly from a depleted mantle, but were most likely formed by partial melting of mantle-derived juvenile crustal materials which were subjected to deep burial and magmatic fractional crystallization. Trace element tectonic discriminant diagrams for granites reveal that biotite granites belong to post-collision granitoids, which marked the end of orogenic movement and the beginning of the intraplate evolution in Karamaili of East Junggar in late Carboniferous.

收稿日期:2005-07-22;修订日期:2005-09-29

基金项目:中国科学院西部之光项目(2002年度);国家重点基础研究发展规划项目(2001CB409805)

作者简介:苏玉平(1981-),男,博士研究生,研究方向为岩石地球化学。

Key words : aluminous A-type granite ; zircon U-Pb age ; petrogenesis ; Karamaili ; East Junggar

A 型花岗岩是当前岩石学和地球化学研究的热 点课题之一,它并不反映岩石的物质来源,而是强调 岩石形成时的岩浆条件(碱性、贫水)和构造背景(非 造山 ¥ Loiselle and Wones 1979 》。早期研究多集中 于岩石学特征、鉴别标志和大地构造意义等方面的 探讨,研究对象也限于碱性过碱性花岗岩(有钠闪 石、钠铁闪石和霓石等碱性暗色矿物)。但随着研究 的深入和分析测试手段的快速发展,亚类划分、岩石 成因及其与成矿关系的研究有所加强,研究对象也 有了很大程度的拓宽。自从 Ebv(1990)和 King 等 (1997)提出铝质 A 型花岗岩这一概念之后 这类岩 石就引起了人们足够的重视。由于铝质 A 型花岗岩 在矿物学特征上不含碱性暗色矿物,在地球化学特 征上也与分异的 I 或 S 型花岗岩有某些重叠 (Whalen et al., 1987) 因此铝质 A 型花岗岩的鉴别 有一定的困难,往往需要多方面的证据。但铝质 A 型花岗岩的研究又十分必要,它不仅是研究壳-幔 相互作用、岩石圈板块演化等地球动力学问题的重 要窗口 还往往是钼、锡和锆等矿矿化的母岩 它的 岩石成因与伴生矿化的形成模式关系非常密切。

东准噶尔是巨型中亚造山带的一部分 ,也是中 亚-兴蒙巨型构造成矿域的重要组成部分 构造上位 于西伯利亚板块与哈萨克斯坦-准噶尔板块的结合 部位 是一个构造背景极为复杂、岩浆活动极其强烈 的地区。该区分布有3条富碱花岗岩带,从北向南 依次沿额尔齐斯--玛因鄂博断裂、乌伦古大断裂和卡 拉麦里大断裂呈北西向展布(忻建刚等,1995;刘家 远等,1999)。忻建刚等(1995)和 Han等(1997)分 别对北带和中带的富碱花岗岩开展了详细的研究工 作,并提出了地壳岩石部分熔融、幔源岩浆高度分异 等不同的成岩模型。但是对卡拉麦里富碱花岗岩的 研究却显得较为薄弱 归纳起来 主要有以下两个不 足:① 缺乏系统的地球化学和同位素年代学的研 究,岩体的侵位顺序基本上是根据岩浆的演化趋势 和岩体的野外穿插关系推测的 ② 前人较重视萨惹 什克北和黄羊山碱性 A 型花岗岩的研究,而少见专 题研究大面积分布且与锡成矿关系密切的黑云母花 岗岩。本文选取苏吉泉黑云母花岗岩体作为研究对 象,在报道岩石的地球化学特征和形成时代的同时, 探讨了其岩石类型、成因及其构造意义。

1 地质概况

新疆东准噶尔卡拉麦里地区位干野马泉和准噶 尔两个陆块之间 ,是东准噶尔古生代造山带的一部 分。一条北西向延伸的蛇绿岩带沿卡拉麦里深大断 裂断续分布 ,其形成时代为早泥盆世 ,可能是小洋盆 的洋壳残片(李锦轶等,1990;李锦轶,1995)。区内 出露的地层以泥盆纪和石炭纪的凝灰质粉砂岩、火 山碎屑岩为主,卡拉麦里深大断裂的南部零星分布 有少量志留纪的地层。花岗岩类岩浆活动在该区大 规模发育 存在与金、铜成矿系列有关的钙碱性花岗 岩和与锡成矿系列有关的富碱花岗岩两类花岗岩 (毕承思等 1993 刘家远等 1997),岩石类型包括斜 长花岗岩、花岗闪长岩、黑云母花岗岩、角闪石花岗 岩和碱性花岗岩等。其中、富碱花岗岩类出露面积 约1100 km²,由不同期次、大小不等的9个岩体组 成 如萨惹什克北、黄羊山碱性花岗岩体 苏吉泉、贝 勒库都克等黑云母花岗岩体(图1)。它们多为岩枝 状小岩体(少数呈岩基状)具有超酸、高碱和高度分 异的特点 同位素年龄介于 248~338 Ma 之间(喻亨 祥等 .1998)。区内苏吉泉黑云母花岗岩体除与锡成 矿作用有关外,其内部还产出一中型石墨矿床。

2 岩石学特征

苏吉泉黑云母花岗岩体是卡拉麦里富碱花岗岩 带最靠南的一个富碱岩体,北为黄羊山碱性花岗岩 体,南邻卡拉麦里缝合带,呈岩株状产出,侵入到泥 盆纪的碎屑岩建造中。岩体以黑云母花岗岩为主, 其内部发育有多种岩脉(如辉绿岩脉),东侧还出露 有少量斜长花岗岩。黑云母花岗岩具中-细粒花岗 结构、斑状结构、文象结构等,块状构造,主要矿物组 成为碱性长石(35%~40%)石英(25%~30%)黑 云母(8%~10%)及斜长石(10%~15%),次要矿物 有角闪石,副矿物有磁铁矿、锆石及磷灰石等,其中 SJ39比其他样品含有更多的角闪石。碱性长石以正 条纹长石为主;斜长石为钠-更长石,普遍发育聚片 双晶;黑云母常常包裹锆石等副矿物,在其内部形成 多色晕圈,部分黑云母已蚀变成绿泥石、绢云母。两

图 1 新疆北部东准噶尔卡拉麦里花岗岩类分布略图(据 1 20 万库普幅地质图)

Fig. 1 Geological sketch map showing the distribution of Karamaili granitoids in East Junggar , northern Xinjiang

个辉绿岩样品(SJ31、SJ35)具岛状辉绿结构,主要由基性斜长石和辉石组成。

3 地球化学组成

所研究样品的岩石化学分析结果及有关参数列 于表 1。从表 1 可以看出 黑云母花岗岩的化学成分 变化 较 大,从 SW 向 NE, SiO, 含 量 逐 渐 减 少 (79.33%~71.78%),而 Al₂O₃和 FeO 含量递增 (Al₂O₃ = 8.21%~12.98%,FeO = 0.54%~ 0.95%),但总体上具有高硅、低铝、贫钙镁、富碱的 特征,与中国含锡花岗岩(毕承思等,1993),福建铝 质A型花岗岩(邱检生等,2000)及澳大利亚A型花 岗岩(Whalen *et al*.,1987)的特征基本一致。岩石 的K₂O>Na₂O,K₂O/Na₂O=1.11~1.24;Fe₂O₃>

表 1 东准噶尔卡拉麦里花岗岩类岩石化学成分

 $w_{\rm B}$ /%

Table 1 Petrochemical compositions of Karamaili granitoids in East Junggar

岩性	黑云母花岗岩							辉绿岩		平均值		
样品号	SJ15	SJ20	SJ28	SJ32	SJ37	SJ39	SJ31	SJ35	1	2	3	
SiO ₂	79.33	76.94	75.75	76.63	76.46	71.78	64.99	51.81	73.62	77.49	73.81	
TiO_2	0.47	0.43	0.57	0.43	0.51	0.57	0.50	0.68	0.16	0.11	0.26	
Al_2O_3	8.21	9.60	10.86	10.33	10.48	12.98	14.64	18.39	13.27	12.24	12.40	
Fe_2O_3	1.74	1.88	1.93	1.67	1.58	2.42	0.90	5.52	0.59	1.24		
FeO	0.54	0.56	0.60	0.60	0.81	0.95	4.09	3.52	2.22	0.16	1.58	
MnO	0.15	0.13	0.14	0.10	0.12	0.18	0.14	0.25	0.06	0.06		
MgO	0.11	0.11	0.14	0.11	0.11	0.10	0.11	4.44	0.38	0.08	0.20	
CaO	0.69	0.69	0.77	0.74	0.71	1.21	3.14	7.41	0.92	0.64	0.75	
Na ₂ O	3.43	3.52	3.54	3.61	3.43	3.48	4.34	3.82	3.11	4.16	4.07	
K_2O	3.92	3.91	4.40	4.13	4.14	4.30	3.06	1.14	4.76	4.25	4.65	
P_2O_5	0.20	0.20	0.27	0.23	0.23	0.28	0.30	0.50	0.01	0.04		
烧失量	0.70	1.53	1.01	1.28	0.97	1.60	3.42	2.40		0.24		
总量	98.79	97.97	98.97	98.58	98.58	98.25	96.21	97.48		100.03		
NK/A	1.20	1.04	0.97	1.01	0.97	0.80	0.71	0.41	0.77	0.93	0.95	
AR	7.73	5.33	4.11	4.75	4.17	2.93	2.43	1.48	2.56	4.65	4.25	
DI	91.80	93.00	93.50	94.20	93.70	88.10	77.40	40.20				

实验数据由中国科学院地球化学研究所用湿化学法测得;NK/A=(Na₂O+K₂O)/Al₂O(分子比);AR表示碱度率;DI表示分异指数;1—中国含锡花岗岩平均值(n=59)(毕承思等,1993)2—福建沿海铝质A型花岗岩平均值(n=9)(邱检生等,2000);3—澳大利亚A型花岗岩平均值(n=148)(Whalen *et al.*,1987)。

2FeO ,反映岩体定位较浅,形成于相对氧化的介质环境, $MnO = 0.10\% \sim 0.18\%$,明显高于典型 A 型花岗岩的平均值 0.06%; FeO* /MgO 值高(16.69 ~ 31.28),均高于分异的 S 型和 I 型花岗岩; NK/A = $0.80 \sim 1.04$ (SJ15 除外), AR = $2.93 \sim 7.73$, 在 SiO₂ - AR 图(图 2)中全部落入碱性岩区,显示本区黑云母花岗岩属于准铝质至弱过碱性花岗岩类型。花岗岩的分异指数 DI 较高,平均为 92.38,部分样品的CIPW 标准矿物中出现 Ac 和 Ns,反映岩体具有高度分异和富碱的特点。

微量元素含量列于表 2。与典型碱性花岗岩一 样,黑云母花岗岩在原始地幔微量元素蛛网图中明 显富集 Rb、K、Th 等大离子亲石元素及 Zr、Hf 等高 场强元素,亏损 Ba、Sr、Nb、Eu 等元素(图3)。元素 Sn 的含量较高,变化范围为3.24×10⁻⁶~18.97

图 2 卡拉麦里花岗岩类 SiO₂ – AR 图解

×10⁻⁶,平均 9.01×10⁻⁶,接近地壳克拉克值的 5 倍,在蛛网图中表现为显著的高峰。10 000×Ga/Al 值变化于 3.35~5.48 之间,明显高于 I 型和 S 型花 岗岩的平均值(分别为 2.1 和 2.28) Whaten *et al.*,

 $w_{\rm B}/10^{-6}$

Table 2 Trace element contents of Karamaili granitoids in East Junggar										
样品号	SJ15	SJ20	SJ28	SJ32	SJ37	SJ39	SJ31	SJ35	2	3
Sc	2.78	3.81	5.38	2.84	1.59	3.98	9.92	5.81	2.75	4.00
Cr	14.94	51.96	30.69	20.42	33.59	23.22	14.01	99.99		
Ni	6.70	23.83	12.16	8.56	15.33	8.30	4.66	43.78	5.22	<1
Zn	83.96	83.08	55.51	61.81	47.22	93.49	73.49	79.66	34.56	120.00
Ga	23.83	25.13	○ 21.12 →	22.02	20.57	23.03	20.97	16.61	18.22	24.60
Rb	224.8	292.0	103.8	222.1	210.4	117.6	91.3	26.9	240.8	169.0
Sr	6.51	4.06	35.27	4.02	7.90	39.14	140.80	342.10	3.56	48.00
Υ	77.54	93.81	51.78	56.90	61.76	51.52	44.06	31.10	26.86	75.00
Zr	135.1	153.9	238.6	167.7	152.5	486.5	376.5	392.5	80.4	528.0
Nb	13.63	18.53	7.58	13.01	12.01	11.84	6.70	6.10	24.56	37.00
Mo	1.33	2.46	4.53	1.37	2.09	2.91	1.84	1.75		
Sn	7.74	10.30	3.24	8.13	18.97	5.67	4.07	2.34		
Ba	35.3	17.3	287.2	15.1	26.8	184.7	609.0	272.7	33.4	352.0
Hf	6.64	8.33	8.03	8.31	7.49	12.07	8.83	7.25	4.44	
Ta	1.57	1.72	0.76	2.26	1.20	0.90	0.61	0.43	2.34	
Th	16.10	20.03	9.90	11.21	19.07	10.08	8.03	1.67	33.60	23.00
U	3.72	4.21	2.89	2.84	3.14	2.60	4.29	0.79	9.51	5.00
La	28.30	27.00	32.82	18.31	19.31	45.01	22.00	9.57	31.00	
Ce	61.57	64.93	72.33	38.19	46.59	88.39	49.34	26.25	53.90	137.00
Pr	8.89	8.13	8.79	6.08	6.57	9.72	6.12	3.77	6.08	
Nd	36.95	34.42	36.03	25.81	28.47	36.43	26.19	18.35	20.31	
Sm	9.70	9.13	8.13	7.01	7.95	7.25	6.20	4.94	3.96	
Eu	0.05	0.03	0.20	0.02	0.04	0.24	1.25	2.00	0.36	
Gd	11.57	11.49	8.73	8.49	9.73	7.71	7.37	6.32	3.91	
Tb	1.95	1.99	1.39	1.46	1.63	1.28	1.17	0.96	0.64	
Dy	12.41	13.20	8.82	9.47	10.17	8.18	7.23	5.80	3.79	
Ho	2.69	3.00	1.93	2.05	2.21	1.80	1.55	1.24	0.90	
Er	7.98	9.04	5.61	5.91	6.32	5.33	4.57	3.45	2.80	
Tm	1.21	1.44	0.85	0.91	0.94	0.83	0.68	0.50	0.47	
Yb	8.22	9.67	5.61	6.22	5.94	5.68	4.38	3.28	3.28	
Lu	1.18	1.42	0.82	0.92	0.86	0.92	0.68	0.49	0.48	
Ga/Al*	5.48	4.94	3.67	4.03	3.76	3.35	2.71	1.71	2.81	3.75
δEu	0.01	0.01	0.07	0.01	0.01	0.10	0.57	1.09	0.28	

表 2 东准噶尔卡拉麦里花岗岩类微量元素含量

注:微量元素在中国科学院广州地球化学研究所用 ICP-MS 法分析 Ga/Al*表示 10 000×Ga/Al 其余同表 1。

图 3 原始地幔标准化微量元素蛛网图

Fig. 3 Primitive-mantle normalized trace element spidergrams 原始地幔标准化值来自 Sun 和 Mcdonough(1989) Primitive-mantle data from Sun and Mcdonough(1989)

1987)。样品 SJ28 和 SJ39 的 Ba、Sr 含量远高于而 Rb 低于其他样品,可能是同源岩浆分异演化程度不 同所致。

黑云母花岗岩的稀土元素含量较高, SREE大 多接近 200×10⁻⁶, 是本区与金、铜成矿关系密切的 钙碱性花岗岩类(SREE = 52.73×10⁻⁶~132.58× 10⁻⁶)的 2~3 倍(喻亨祥等,2000),也明显高于晚期 的辉绿岩脉。Eu的负异常极强 δ Eu = 0.01~0.10。 稀土元素配分模式呈平坦的'V'字型(图4)除 SJ39 外(La/Yb)、均小于5,轻、重稀土元素的分馏不明 显(La/Sm)、=1.57~2.61(SJ39除外)(Gd/Yb)、 =0.98~1.36,其分馏程度明显不及尼日尼亚及我 国山海关等地产于裂谷、类裂谷环境的钠闪石花岗 岩(Bowden and Kinnaird,1984),而与祁漫塔格铝质 A型花岗岩较为相似(陈丹玲等,2001)。

4 结果及讨论

4.1 铝质 A 型花岗岩的厘定 A型花岗岩的概念提出之后,众多岩石学家和

图 4 稀土元素配分模式图

Fig. 4 Chondrite-normalized REE patterns 球粒陨石标准化值来自 Sun 和 Mcdonough (1989) chondrite data from Sun and Mcdonough (1989)

地球化学家就开始探讨它与其他类型花岗岩的区 别,并试图从多个角度提出 A 型花岗岩的鉴别标志。 如 Eby(1990)提出了 A 型花岗岩主量元素的界定范 围即SiO2含量为70%Na2O+K2O为7%~11%, CaO < 1.8%, FeO*/MgO 为 8 ~ 20; Clemens 等 (1986) 通过实验模拟限定了 A 型花岗岩形成的温压 条件,指出 A 型花岗质熔体的水含量为 2.4% ~ 4.3% ;Whalen 等(1987) 在总结大量数据的基础上, 阐述了 A 型花岗岩典型的微量元素特征 并以此为 依据提出了一系列 A 型花岗岩的微量元素判别图 解。在这些图(图5)中本区黑云母花岗岩全部落入 A型花岗岩区。由于分异的I或S型花岗岩的某些 地球化学特征可能与 A 型花岗岩重叠,因此必须对 两者加以鉴别。图 6a 显示分异的 I 型 Ackley 岩套) 或 S型(Sandy Cape 岩套)花岗岩的 Rb/Ba 和 Zr+ Ce+Y之间具强烈的负相关趋势,而在碱性A型花 岗岩(Topsails 岩套)中,它们无明显关系。本区黑云 母花岗岩的投影点位于 Ackley 岩套与 Topsails 岩套 之间 指示黑云母花岗岩不同于一般的分异 I 或 S 型花岗岩,也不同于一般的碱性A型花岗岩。也许 因为副矿物分异的缘故 Zr + Nb + Ce + Y 对主量元 素作图能够区别未分异的 M、I、S 型花岗岩以及分 异花岗岩和 A 型花岗岩(Whalen et al., 1987)。在 图 6b 中,黑云母花岗岩也全部投入 A 型花岗岩区。 以上几个图解均显示东区黑云母花岗岩为典型的铝 质 A 型花岗岩,它不是分异的 I 或 S 型花岗岩,也不 同干一般的碱性 A 型花岗岩。

与上述讨论结果相对应,岩体的野外产状和矿 物学特征也提供了支持上述结论的证据,主要有:① 岩体具有类环状的地质产状 浅成-超浅成的定位特 征,并与早期的 I 型花岗岩共生 ② 黑云母花岗岩体 大面积分布 ,同期伟晶岩脉缺乏 ;③ 岩石有一定的 斜长石含量,石英与碱性长石的微文象交生十分普 遍,暗色矿物主要为黑云母,且黑云母属铁叶云母 (吴郭泉等,1997)。上述性质和特征都为铝质 A 型 花岗岩所特有(许保良等,1998;邱检生等,2000)因 此 将黑云母花岗岩划为铝质 A 型花岗岩是适宜且 合理的。由此推论,本区其他几个黑云母花岗岩体 (如贝勒库都克、卡姆斯特)也可能属铝质 A 型花岗 岩体,当然这需要野外地质和地球化学的进一步验 证。需要指出的是,长期以来一直把本区黑云母花 岗岩作为 S 型花岗岩来考虑(毕承思等,1993;喻亨 祥等 ,1998) ,这与对广东佛冈岩体的认识过程相一

Fig. 5 Trace element discrimination diagrams of biotite granites after Whalen et al., 1987)

图 6 A型花岗岩 Rb/Ba-Zr+Ce+Y和 FeO*/MgO-Zr+Nb+Ce+Y判别图(据 Whalen 等,1987) Fig. 6 Rb/Ba versus Zr+Ce+Y and FeO*/MgO versus Zr+Nb+Ce+Y discrimination diagrams for A-type granites (after Whalen *et al*., 1987) FG—分异长英质花岗岩 DGT—未分异的 M、I和S型花岗岩

FG-fractional felsic granite QGT-unfractional M-, I-and S-granites

致(包志伟和赵振华,2003)。该岩体地球化学特征 和成因类型的再认识,不仅对探讨卡拉麦里地区地 壳物质组成及构造演化有着重要的地质意义,还为 我国新疆北部寻找与铝质A型花岗岩有关的锡矿资 源开辟了方向。

4.2 形成时代

东准噶尔卡拉麦里地区富碱花岗岩及锡矿的年 龄数据极其有限,因此加强两者的年代学研究十分 必要。本文采用单颗粒锆石 U-Pb 定年法,分析数据 见表 3。用来分析的锆石都是岩浆成因的,具有透 明、自形和发育韵律环带结构等特征。由于²⁰⁷ Pb/ ²³⁵U值受普通铅校正影响较大,笔者采用²⁰⁶ Pb/²³⁸U 加权平均年龄,结果为:304±2 Ma,MSWD=2.3 (SJ39)(图7)。该年龄误差范围小,可靠性高,因此 能够代表苏吉泉黑云母花岗岩体的侵位年龄。该年 龄与干梁子黑云母花岗岩体的侵位年龄非常接近, 干梁子主体相黑云母花岗岩同时代侵位的钠铁闪石 花岗岩脉的形成时代为307 Ma(陈富文等,1999)。 区域上其他花岗岩类型的成岩年龄如下:钙碱性花 岗岩(I型)成岩年龄为332.7~313.7 Ma(喻亨祥

				•		0		• •		
			表面年龄/Ma							
万机只	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 1\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 1\sigma$	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma$	²⁰⁷ Pb / ²³⁵ U	$\pm 1\sigma$
1.1	0.0480	0.0005	0.3517	0.0079	0.0532	0.0013	302	3	306	6
2.1	0.0476	0.0003	0.3498	0.0046	0.0533	0.0005	300	2	305	4
3.1	0.0489	0.0008	0.3435	0.0083	0.0509	0.0017	308	5	300	6
4.1	0.0477	0.0006	0.3550	0.0087	0.0539	0.0015	301	4	308	6
5.1	0.0482	0.0004	0.3473	0.0041	0.0523	0.0006	303	2	303	3
6.1	0.0477	0.0008	0.3404	0.0084	0.0518	0.0011	300	4	298	7
7.1	0.0482	0.0007	0.3522	0.0072	0.0530	0.0012	303	4	306	5
8.1	0.0471	0.0014	0.3402	0.0130	0.0523	0.0014	297	9	297	10
9.1	0.046 5	0.0012	0.3278	0.0125	0.0512	0.0019	293	8	288	10
10.1	0.0484	0.0007	0.3488	0.0079	0.0523	0.0009	304	4	304	6
11.1	0.0488	0.0006	0.3759	0.0107	0.0559	0.0013	307	4	324	8
12.1	0.0484	0.0004	0.3473	0.0046	0.0520	0.0006	305	3	303	4
13.1	0.0487	0.0005	0.3501	0.0063	0.0521	0.0009	306	2	305	5
14.1	0.0478	0.0005	0.3504	0.0047	0.0532	0.0008	301	3	305	3
15.1	0.0472	0.0006	0.3383	0.0077	0.0520	0.0010	297	4	296	6
16.1	0.0498	0.0004	0.3652	0.0056	0.0532	0.0010	313	$\begin{pmatrix} 2 \end{pmatrix}$	316	4
17.1	0.0485	0.0008	0.3507	0.0059	0.0525	0.0012	305	2	305	4
18.1	0.0492	0.0006	0.3652	0.0065	0.0539	0.0013	309	3	316	5
19.1	0.0469	0.0006	0.3489	0.0100	0.0539	0.0013	296	4	304	8

表 3 黑云母花岗岩的锆石 LA-ICPMS U-Pb 年龄分析结果 Table 3 Zircon LA-ICPMS U-Pb analytical results for the biotite granites from Suijouan

锆石 LA-ICPMS U-Pb 年龄分析在加拿大纽芬兰纪念大学(MUN)完成、所用等离子质谱仪为 HP 4500 所列数据均参与了²⁰⁶Pb/²³⁸U 年龄的 加权平均计算。

等,1998),黄羊山碱性花岗岩的单颗粒锆石 U-Pb年 龄为 300~305 Ma(笔者未发表数据),萨惹什克北 含矿钠闪石花岗岩的同位素年龄为 290±11 Ma(刘 家远等,1997)。尽管从年龄数据上无法清楚识别苏 吉泉铝质 A 型花岗岩和黄羊山、萨惹什克北碱性 A 型花岗岩形成的早晚,但野外地质现象及众多学者 对两种 A 型花岗岩相伴生的研究成果(Landenberger et al.,1996;邱检生等,2000;苏玉平等,2005)均支 持铝质 A 型花岗岩形成较早、其岩浆很可能分异演 化出晚期的碱性 A 型花岗岩的观点。因此,卡拉麦 里地区岩浆演化过程大致如下:从早到晚,岩石从花 岗闪长岩、黑云母花岗岩演化到钠闪石-铁闪石花岗 岩,花岗岩化学成分具有从钙碱性、偏碱性到过碱性 的演化趋势,花岗岩成因类型呈现从 I型、铝质 A型 到碱性 A型的演化规律,它们可能构成了一个同源 岩浆多次侵入、分异演化较彻底的 I-A型复合杂岩 体(超单元),其中演化早期的花岗岩与铜、金成矿系 列有关,演化晚期的花岗岩与锡成矿系列有关。以 上认识与前人的观点不完全一致,如毕承思等 (1993),喻亨祥等(1998)认为卡拉麦里富碱花岗岩 带存在两个岩浆演化系列(超单元组合),且黄羊山 碱性花岗岩比苏吉泉黑云母花岗岩形成早。

4.3 岩石成因及构造意义

本区黑云母花岗岩 Sr-Nd 同位素组成列于表 4。 从表 4 可以看出 ,2 个样品的 $I_{\rm Sr}$ 都低于玄武质无球 粒陨石的初始比值 0.699 ,这显然是不可能的 ,造成 这一现象的主要原因是花岗岩具有高放射性成因 Sr 和高的 Rb/Sr 值(韩宝福等 ,1997)。花岗岩的 ϵ Nd(t)为 5.90~6.30 ,表明其源区应以亏损地幔或 以由亏损地幔而来的年轻地壳为主。源岩中除了亏 损地幔物质之外 ,还应有一定量地壳物质的混染 ,主 要证据有 :①产于黑云母花岗岩体东侧的斜长花岗 岩的 ϵ Nd(t)=9.47(将另文刊出),其值明显比黑云 母花岗岩高 ;②微量元素蛛网图中元素Nb表现为明

表 4 东准噶尔卡拉麦里黑云母花岗岩 Sr-Nd 同位素组成 Table 4 Sr and Nd isotopic compositions of biotite granite in Karamaili, East Junggar

样号	w(Sm)10 ⁻⁶	w(Nd)10 ⁻⁶	¹⁴⁷ Sm / ¹⁴⁴ Nd	$^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$	$2\sigma_{\rm m}$	$t_{\rm DM}/{ m Ma}$	$\epsilon Nd(t)$	⁸⁷ Sr/ ⁸⁶ Sr	$2\sigma_{\rm m}$	$I_{\rm sr}$
SJ15	10.441	39.867	0.1583	0.512884	5	554	6.30	1.106688	28	0.65611
SJ37	10.186	34.398	0.1765	0.512905	5	579	6.00	0.959025	15	0.61634
SJ39	7.659	38.954	0.1189	0.512785	5	587	5.90	0.737 406	18	0.69956

Sm-Nd 和 Sr 同位素组成在加拿大纽芬兰纪念大学用 MAT262 固体质谱仪测定 计算 I_{sr} 所用的⁸⁷Rb/⁸⁶Sr 是根据表 2 中样品的 Rb, Sr 含量和 本表中的⁸⁷Sr/⁸⁶Sr 计算的 t_{DM} 为两阶段模式年龄,计算公式为 $t_{DM}=1/\lambda$ In{1+[(¹⁴³Nd/¹⁴⁴Nd)_{sample}-((¹⁴⁷Sm/¹⁴⁴Nd_{sample}-(¹⁴⁷Sm/¹⁴⁴Nd)_c) × ($e^{\lambda t} - 1$)-(¹⁴³Nd/¹⁴⁴Nd)_{DM})/((¹⁴⁷Sm/¹⁴⁴Nd)_c -(¹⁴⁷Sm/¹⁴⁴Nd)_{DM})),其中(¹⁴⁷Sm/¹⁴⁴Nd)_c = 0.118 0 (¹⁴⁷Sm/¹⁴⁴Nd)_{DM} = 0.213 6, (¹⁴³Nd/¹⁴⁴Nd)_{DM} = 0.513 151, t 表示花岗岩的侵位年龄 淬文用 t = 305 Ma 来计算同位素初始值。

显亏损(Han et al., 1997);③贝勒库都克黑云母花 岗岩的 δ¹⁸ O 值为 10.03‰ ~ 10.35‰(刘家远等, 1997)本区黑云母花岗岩的氧同位素特征可能与之 类似。现在的问题是 黑云母花岗岩是幔源岩浆高 度分异的产物还是来源于年轻地壳物质的部分熔 融?如果黑云母花岗岩是幔源岩浆的直接分异产 物 其周围应有大量辉长岩出露 ,但事实上 ,卡拉麦 里地区仅在老鸦泉岩体以南发现有少量辉长岩,当 然也不排除有基性岩浆底侵的可能性。李锦轶和肖 序常(1999)的研究还显示,本区富碱花岗岩体数量 较多 钾质含量也均较高 把它们的岩浆都归因于地 幔熔融物的分异显然是不合适的。因此,本区黑云 母花岗岩更可能来源于由洋壳和岛弧建造组成的年 轻地壳 这些年轻地壳在晚古生代的构造演化过程 中很可能被埋深于下地壳(Chen and Jahn ,2004),它 们作为源岩在幔源岩浆提供热源的情况下部分熔融 形成了本区黑云母花岗岩。李锦轶和肖序常(1999) 的认识也支持以上结论,他们认为花岗岩的同位素 幔源特征不能表明这些岩浆岩都来源于亏损地幔, 它们也可以由洋岩石圈及其派生物质与古陆壳混合 物重熔所形成。另外,King等(1998)指出,由再循环 俯冲洋壳低程度部分熔融产生的酸性岩浆富集 LILE和 HSFE等不相容微量元素,这些都与本文铝 质 A 型花岗岩的基本地球化学特征相吻合。

黑云母花岗岩的投影点在 Rb/Sr – SiO₂ 协变图 上(图 8a)呈指数曲线,在由强不相容元素(Rb)与强 相容元素(Sr)组成的对数图解上(图 8b)构成陡倾斜 的负相关线,且这些花岗岩的 Ba、Sr、Eu等元素强烈 亏损,这都表明了分离结晶是卡拉麦里黑云母花岗 岩的主导成岩作用。这一成岩过程与西准噶尔达拉 布特铝质 A 型花岗岩的形成过程极其相似(将另文 刊出),所不同的是,本区花岗岩的 ε Nd(t)较后者 (6.42~7.42)低,可能表明岩石形成过程中地壳物 质或大洋沉积物的混入更多。

图 8 Rb/Sr – SiO₂及 Sr – Rb 微量元素判别图 Fig. 8 Rb/Sr versus SiO₂ and Sr versus Rb trace-element discriminant diagrams

铝质 A 型花岗岩的产出往往能够指示一定的构造意义。在 Rb-Y+Nb 图(图 9)中,黑云母花岗岩的投影点都位于板内花岗岩区,沿火山弧花岗岩区和板内花岗岩区的界线分布,Pearce(1996)的研究表明,这种类型的花岗岩更应是一种后碰撞花岗岩,具

有板内花岗岩的某些特征,而非板内花岗岩。Eby (1992)将 A 型花岗岩分为 A1 型和 A2 型,并认为 A2 型花岗岩来源于大陆地壳或板下地壳,且与陆-陆碰撞或岛弧岩浆作用有关。本区黑云母花岗岩全 部落入A2区(图9)也同样说明了它们是在后碰撞

图 9 Rb – Y + Nh 据 Pearce 等, 1984)及 Nb – Y – Ce 判别图(据 Eby, 1992) Fig. 9 Rb versus Y + Nh after Pearce *et al.*, 1984) and Nb – Y – Ce (after Eby, 1992) discriminant diagrams

的张性环境中侵位的,其形成标志着造山作用的结 束和板内构造演化的开始。结合前人对卡拉麦里蛇 绿岩的研究(李锦轶等,1990;李锦轶,1995),可以认 为东准噶尔卡拉麦里地区晚古生代构造-岩浆演化 过程大致如下 泥盆纪,卡拉麦里有限洋盆形成并持 续向两侧的陆块俯冲,并在陆块边缘产生了陆缘火 山弧;早石炭世,两侧的陆块相连,卡拉麦里有限洋 盆关闭并转变为陆间残余海盆,晚石炭世,碰撞造山 作用结束,由被深埋的洋壳和岛弧建造组成的年轻 地壳(可能还含有少量陆间残余海盆沉积物)经过部 分熔融和结晶分异作用产生大面积分布的富碱花岗 岩,幔源岩浆活动如底垫作用(韩宝福等,1999)可能 为此提供了热源;从晚石炭世末期开始,全区进入板 内演化阶段,幔源岩浆活动强烈,沿有利构造部位上 涌,辉绿岩脉可能就是此次幔源岩浆作用的产物。

本文得到了加拿大纽芬兰纪念大学地球科学系的 Paul Sylvester 教授、Mike Tubrett 和 Marc Poujol 博士以及广州地球化学研究所李文铅博士的大力支持 特此致谢。

References

- Bao Zhiwei and Zhao Zhenhua. 2003. Geochemistry and tectonic setting of the Fugang aluminous A-type granite, Guangdong Province , China—A preliminary study J. Geology-Geochemistry $31(1)52 \sim 61$ (in Chines with English abstract).
- Bi Chengsi, Shen Xiangyuan, Xu Qingsheng, et al. 1993. Geological characteristics of stanniferous granites in the Beilekuduk tin metallogenic belt, Xinjiang J]. Acta Petrologica et Mineralogica, 12(3): 213~223(in Chinese with English abstract).
- Bowden P and Kinnaird J A. 1984. The petrology and geochemistry of alkaline granites from Nigeria [J]. Phys. Earth Planet Int., 35:199

~211.

- Chen B and Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China : Nd-Sr isotope and trace element evidence J J. Journal of Asian Earth Sciences , 23 : 691~703.
- Chen Danling, Liu Diang, Che Zicheng, *et al*. 2001. Determination and preliminary study of Indosinian aluminous A-type granites in the Qimantag area, southeastern Xinjing J]. Geochimica, 30(6): 540 ~ 546(in Chinese with English abstract).
- Chen Fuwen, Li Huaqin, Cai Hong, et al. 1999. Chronology and origin of the Gangliangzi tin ore field, Xinjang J. Mineral Deposits, 18 (1)91~97 (in Chinese with English abstract).
- Clemens J D , Holloway J R and White A J R. 1986. Origin of an A-type granite : Experimental constraints J J. American Mineralogist , 71 : 317~324.
- Eby G N. 1990. The A-type granitoids 'A review of their occurrence and chemical characteristics and speculations on their petrogenisis[J]. Lithos , 26 : 115~134.
- Eby G N. 1992. Chemical subdivision of the A-type granitoids : Petrogenetic and tectonic implications J. Geology, 20:641~644.
- Han Baofu, He Guoqi and Wang Shiguang. 1999. Post collisional mantlederived magmatism, underplating and basement nature of the Junggar terran [J]. Science in China (Series D), 29(1):16~21 (in Chinese with English abstract).
- Han B F , Wang S G , Jahn B M , et al. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang , China geochemistry and Nd-Sr isotopic evidence , and implications for Phanerozoic crustal growth [J]. Chemical Geology ,138:135~159.
- Han Baofu , Wang Shiguang , Jahn Borming , et al. 1997. Nd isotopic characteristics of Ulungur River alkaline granites from Xinjiang and its significance for Phanerozoic crustal growth[J]. Chinese Science Bulletin , 42(17):1829~1832(in Chinese with English abstract).
- King E M , Valley J W , Davis D W , et al. 1998. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province : indicator of magmatic source[J]. Precam. Res. , 92 :47~67.
- King P L , White A J R , Chappell B W , et al. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt , Southeastern Australia J J. J. Petrol , 38: 371~391.
- Landenberger B and Collins W J. 1996. Derivation of A-type granites

from a dehydrated charnockitic lower crust: evidence from the Chaelundi Complex , eastern Australia J J Journal of Petrology , 37 (1):145 $\sim 170.$

- Li Jinyi. 1995. Main characteristics and emplacement processes of the east Junggar ophiolites Xinjiang China J]. Acta Petrologica Sinica , 11(suppl.).73~84(in Chinese with English abstract).
- Li Jinyi and Xiao Xuchang. 1999. Brief review son some issues of framework and tectonic evolution of Xinjiang crust, NW China J]. Scientia Geologica Sinica, 34(4):405~419(in Chinese with English abstract).
- Li Jinyi , Xiao Xuchang , Tang Yaoqing , *et al* . 1990. Main characteristics of late paleozoic plate tectonics in the southern part of east Junggar , Xinjiang J]. Geological Review , 36(4) 305 ~ 316(in Chinese with English abstract).
- Liu Jiayuan , Yu Hengxiang and Wu Guoquan. 1997. Alkali granites and tin deposits of the Kalamali area ,northern Xinjiang J]. Geological Exploration For Non-Ferrous Metals , 6(3):129 ~ 135(in Chinese with English abstract).
- Liu Jiayuan , Yu Hengxiang and Wu Guoquan. 1999. Two kinds of alkaline granites in eastern Junggar , Xinjiang and their geological significance J]. Bulletin of Mineralogy , Petrology and Geochemistry , 18 (2) 89~94 (in Chinese with English abstract).
- Loiselle M C and Wones D R. 1979. Characteristics and origin of anorogenic granites [J]. Geological Society of America, Abstract, 11: 468.
- Pearce J A. 1996. Sources and settings of granitic rocks[J]. Episodes , 19(4):120~125.
- Pearce J A , Harris N B W and Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology , 25 : 956~983.
- Qiu Jiansheng, Wang Dezi , Satoshi Kanisawa , et al. 2000. Geochemistry and petrogenesis of aluminous A-type granites in the coastal area of Fujian Province J]. Geochimica , 29(4): 313 ~ 321(in Chinese with English abstract).
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts : implications for mantle composition and processes
 [A]. Saunders A D and Norry M J. Magmatism in the Ocean Basins
 [C]. Geol. Soc. London , Spec. Publ. , 42 : 313~345.
- Su Yuping and Tang Hongfeng. 2005. Trace element geochemistry of Atype granites J. Bulletin of Mineralogy, Petrology and Geochemistry, 24(3):245~251(in Chinese with English abstract).
- Whalen J B , Currie K L and Chappell B W. 1987. A-type granites :geochemical characteristics , discrimination and petrogenesis[J]. Contrib. Mineral. Petrol. ,95 :407~419.
- Wu Guoquan , Liu Jiayuan and Yuan Kuirong. 1997. The composition of the Kelameili high-alkaline granite belt , Xinjiang[J]. Journal of Guilin Institute of Technology , 17(1):18 \sim 25(in Chinese with English abstract).
- Xin Jianggang , Yuan Kuirong and Liu Jiayuan. 1995. The alkali granites and their genesis and tectonic significance in the north area of the east Junggar , Xinjiang J]. Geotectonica et Metallogenia , 19(3):214 \sim 226(in Chinese with English abstract).

Xu Baoliang, Yan Guohan, Zhang Chen, et al. 1998. Petrological sub-

division and source material of A-type granites J]. Earth Science Frontier (China University of Geosciences, Beijing), 5(3):113 \sim 124(in Chinese with English abstract).

- Yu Hengxiang , Wu Guoquan and Liu Jiayuan. 1998. The two ore-forming metals series closely related to the two granitoid series in eastern Junggar , Xinjang J]. Geotectonica et Metallogenia , 22(2):119 \sim 127(in Chinese with English abstract).
- Yu Hengxiang , Xia Bing , Liu Jiayuan , et al . 2000. Collisional orogenesis and granitoids and related metallogenic series from eastern Junggar [J]. Journal of Guilin Institute of Technology , 20(3) 213~219(in Chinese with English abstract).

附中文参考文献

- 包志伟,赵振华. 2003.佛冈铝质 A 型花岗岩的地球化学及其形成环 境初探 J]. 地质地球化学 31(1) 52~61.
- 毕承思 沈湘元 徐庆生 ,等. 1993.新疆贝勒库都克锡矿带含锡花岗 岩地质特征 J]. 岩石矿物学杂志 ,12(-3) 213~223.
- 陈丹玲,刘 良,车自成,等. 2001. 祁漫塔格印支期铝质 A 型花岗岩 的确定及初步研究 ① 地球化学 30(6)540-546.
- 陈富文,李华芹、蔡 红,等.1999.新疆干梁子锡矿田成岩成矿作用 同位素年代学研究及矿床成因探讨[J].矿床地质,18(1):91~ 97.
- 韩宝福 何国琦 汪式洸. 1999. 后碰撞幔源岩浆活动、底垫作用及准 噶尔盆地基底的性质 []. 中国科学(D辑),29(1):16~21.
- 韩宝福,王式洸,江博明,等.1997.新疆乌伦古河碱性花岗岩 Nd 同 位素特征及其对显生宙地壳生长的意义[J].科学通报,42(17): 1829~1832.
- 李锦轶. 1995. 新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩 石学报,11(增刊):73~84.
- 李锦轶,肖序常.1999. 对新疆地壳结构与构造演化几个问题的简要 评述[J]. 地质科学,34(4):405~419.
- 李锦轶,肖序常,汤耀庆,等. 1990. 新疆东准噶尔卡拉麦里地区晚古 生代板块构造的基本特征[J]. 地质论评,36(4)305~316.
- 刘家远 喻亨祥 吴郭泉. 1997. 新疆北部卡拉麦里富碱花岗岩带的 碱性花岗岩与锡矿]]. 有色金属矿产与勘查 (3):129~135.
- 刘家远 喻亨祥 吴郭泉. 1999. 新疆东准噶尔两类碱性花岗岩及其 地质意义[]]. 矿物岩石地球化学通报,18(2)89~94.
- 邱检生,王德滋,蟹泽聪史,等. 2000. 福建沿海铝质 A 型花岗岩的地 球化学及岩石成因[J]. 地球化学 29(4) 313~321.
- 苏玉平 ,唐红峰. 2005. A型花岗岩的微量元素地球化学[J]. 矿物岩 石地球化学通报 24(3)245~251.
- 吴郭泉,刘家远,袁奎荣. 1997.新疆卡拉麦里富碱花岗岩带组成 [J].桂林工学院学报,17(1):18~25.
- 忻建刚 袁奎荣 刘家远. 1995. 新疆东准噶尔北部碱性花岗岩的特 征、成因及构造意义[]]. 大地构造与成矿学,19(3)214~226.
- 许保良,阎国翰 涨 臣,等. 1998. A型花岗岩的岩石学亚类及其物 质来源 J].地学前缘 ≲ 3):113~124.
- 喻亨祥,吴郭泉,刘家远. 1998. 新疆东准噶尔地区两类花岗岩与两 个成矿系列[J].大地构造与成矿学,22(2):119~127.
- 喻亨祥,夏 斌,刘家远,等.2000.东准噶尔碰撞造山作用与花岗岩 类及有关金属成矿系列[J].桂林工学院学报 20(3)213~219.