十字石的原位高压 X 射线衍射研究

单竞男1 秦 善1 隋兴伟1 刘 景2 李 晖2

(1. 北京大学 地球与空间科学学院,北京 100871;2. 中国科学院 高能物理研究所 同步辐射实验室,北京 100049)

摘 要:利用原位高压同步辐射能量色散 X 射线衍射技术,在室温下对采自新疆阿尔泰地区冲乎尔递增变质带的天 然十字石进行高压晶体结构测定,测量的压力范围为 0.000 1~3.9 GPa,共 11 组有效数据。实验表明,在实验压力 范围内 随着压力的增加晶胞参数 β 值逐渐增大,表明了十字石的结构对称性随压力增加而有所降低;同时,在 1.5 ~2.7 GPa 压力范围内,十字石的晶体结构也发生了改变。

关键词 :十字石 :高压 :同步辐射 :结构变化

中图分类号: P578.94+6; O72 文献标识码: A

文章编号:1000-6524(2007)05-0436-05

The in-situ high-pressure X-ray diffraction of natural staurolite

SHAN Jing-nan¹, QIN Shan¹, SUI Xing-wei¹, LIU Jing² and LI Hui²

(1. School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The in-situ high-pressure structure of natural staurolite collected from the progressive metamorphic belt in Chonghuer of Altay area in Xinjiang was studied at room temperature using synchrotron radiation energy dispersive X-ray diffraction and diamond anvil cell under the pressure up to 3.9 GPa. The experimental results show that the unit-cell parameter β is continuously increasing with increasing pressure, suggesting the decrease of structural symmetry of staurolite. An unknown phase transition in staurolite structure was also observed in the pressure range of $1.5 \sim 2.7$ GPa.

Key words: staurolite; high-pressure; synchrotron radiation; phase transition

十字石是一种常见的变质成因的硅酸盐矿物, 其结构(空间群)最早由 Náray-Szabó(1929)定为 *Ccmm*,之后又被其本人推翻重新确定为 *C2/m* (Náray-Szabó and Sasvári, 1958)并沿用至今。由于 十字石的 $\beta \approx 90^{\circ}$,故十字石常被称为似正交晶系矿 物。

天然产出的十字石化学组成十分复杂,常见有 Fe 十字石和 Mg 十字石两个端员,其化学成分可用 通式表示为:Fe₃²⁺4[T2]Fe₀²⁺0.5[M4 【Al₂□2 】M3] Al₁6[M1 JM2]Sia[T1]O₄₈H_{2~4}([]]及其中字母表示 阳离子在结构中的占位),其中 Fe²⁺ 可被 Mg、Zn、 Mn 等替代,以占据 M4 位置的是 Fe 还是 Mg 来区 分 Fe 十字石或 Mg 十字石端员(Hawthorne *et al*., 1993)。

从整体看来,十字石的晶体结构可被视为氧原 子近似立方最紧密堆积,其间 Al 占据八面体(M1、 M2、M3)位置,Fe 和 Si 都是占据四面体(T2、T1)位 置,有时 Si 可被 Al 替代(Makreski *et al*., 2005)。 Al—O 八面体以共棱方式沿 *c* 轴方向延伸成链,链 间以多余的Al八面体和Si、Fe四面体相连,习惯上

收稿日期:2007-03-30;修订日期:2007-04-16

基金项目:国家自然科学基金资助项目(40672024);中国科学院知识创新重要方向项目(KJCX2-SW-N20)

作者简介:单竞男(1980 -),女,硕士研究生,从事矿物学研究,通讯作者 秦 善, E-mail: sqin@pku.edu.cn。

被描述为平行于(010)并沿 b 轴方向交叠组合的蓝 晶石 层[Al₂SiO₅]与铁铝氧氢层[Fe²⁺Al_{0.7}O₂ (OH),]如图 1 所示。

图 1 十字石结构中平行(010)并沿 b 轴方向交叠组合 的蓝晶石层和铁铝氧氢层

Fig. 1 The overlap of (010) layers consisting of kyanite and Fe-Al hydroxide layers in the structure of staurolite

作为一种中级区域变质作用的标型矿物,十字 石的形成条件仅限于一定的温度压力范围内:Fe+ 字石一般存在于 $t = 550 \sim 700 \ C.p > 0.15$ GPa (Richardson, 1966)或 $t \leq 550 \ C.p > 0.9$ GPa (Ganguly, 1972)的范围内;Mg 十字石则稳定在 t = 700~1000 C和 p > 1.2 GPa(Schreyer and Chinner, 1966)范围内。此外,在 p > 3 GPa 的变质岩中也含 少量 Mg 十字石包裹体(Schreyer, 1988),甚至在 Swaziland 俯冲带中的金刚石中都发现过壳源成因 的 Fe 十字石包裹体(Daniels *et al.*, 1996)。实验研 究表明,十字石与硬柱石、硬绿泥石等含水相矿物是 水由地球表面向深部地层输送的重要载体(Poli and Schmidt, 1995),因而,对其原位高压晶体结构的深 入研究有着矿物学和岩石学的双方面意义。

在十字石的高温高压结构研究方面,Gibbons等 (1981)利用高温X射线衍射方法对常压条件下Fe十

字石随温度变化的行为进行了研究 ,测定得到脱氢 变化 ~500℃)前晶体的平均膨胀系数。Caucia 等 (1994) 通过对氧化脱氢过程中结构研究发现,十字 石的无序程度随温度升高而增加,并认为这种变化 主要是由 T2 位置中的 Fe 被氧化而失去相连的 H 引起的。另外利用中子衍射(Stähl et al., 1988)和 红外吸收光谱(Koch-Müller et al., 1995)也可确定 结构中 H 的占位情况及其含量与 M3 占位度的关系 (Caucia et al., 1994)。而关于十字石在压力下的结 构研究文献很少,仅 Comodi 等(2002)对 Fe 十字石 进行了高压单晶 X 射线衍射实验研究,最高压力为 8.74 GPa。该文未对高压相十字石进行结构精修, 其晶胞参数根据 Ccmm 计算得出 晶轴及晶胞体积 均随压力的增加而减小,没有发现因相变引起的参 数突变。本文采用同步辐射能散X射线衍射 (EDXD)和金刚石对顶砧(DAC)技术对十字石进行 原位高压结构研究,以期获得十字石结构在高压下 的变化情况并对 Comodi 等(2002)的实验结论进行 比较和验证。

1 样品和实验

天然十字石样品采于新疆阿尔泰地区冲乎尔递 增变质带中,其产状的详细描述见文献(张翠光等, 2004 徐学纯等,2005)。本文研究十字石样品属于 Fe十字石,基于氧原子数为48计算的结构化学式为 (Fe_{3.070} Mn_{0.102})^{T2,M4} (Al₂Mg_{0.260})^{M3} (Al_{15.305} Mg_{0.584} Ti_{0.103} Cr_{0.006})^{M1,M2} (Si_{7.607} Al_{0.393})^{T1} O₄₄ (OH),其化学组成详见表 1。

十字石的原位高压实验是在北京同步辐射装置 (BSRF)高压站完成的。实验中采用了 DAC 高压装 置,其金刚石砧面直径为 500 μm,高压密封垫片为 T301高温合金钢片,预压厚度 60 μm,样品腔直径约 为 200 μm,X 射线光斑尺寸为 55 μm×50 μm。十字

wB/%

表 1 十字石电子探针分析结果

 Table 1
 Chemical composition of staurolite

						-					
样品	SiO_2	TiO ₂	Al_2O_3	Cr_2O_3	FeO	NiO	MnO	MgO	Na ₂ O	K_2O	Total
1	26.46	0.50	55.31	0.05	13.12	0.04	0.50	2.11	0.02	0.00	98.11
2	28.39	0.36	52.67	0.02	13.73	0.01	0.28	2.17	0.04	0.02	97.69
3	27.63	0.49	54.78	0.03	13.41	0.00	0.58	2.05	0.03	0.00	99.00
4	27.71	0.64	54.71	0.00	12.91	0.00	0.39	1.87	0.03	0.00	98.26
平均成分	27.55	0.50	54.37	0.03	13.29	0.01	0.44	2.05	0.03	0.01	98.27

数据引自张翠光等(2004)。

石晶体经研磨后与压标物质 NaCl 一起放入样品腔, 传压介质为 4:1 的甲醇和乙醇的混合物。压力标定 根据 NaCl 的状态方程(Decker, 1971)来进行,视 NaCl 衍射峰出现情况,采用 200 或 220 进行压力标 定。零压下 NaCl 主衍射峰 200 明锐,可据其来标定 压力;第一次加压后(0.4 GPa),该峰几乎消失,而 NaCl的次强衍射峰 220 又与样品峰重叠,为此,本文 采用软件 Peakfit 4.0 对 NaCl 衍射峰位置进行非线 性拟合,从而确定 200 及 220 峰的位置。此压力后, 220 峰清楚,压力标定就可根据 220 峰进行。X 射线 衍射测量在室温下进行,固定 20 角为 19.034°。数 据收集的能量范围为 0~40 keV,采谱时间为 600~ 900 s。探测器采用低能锗半导体探测器,其固有分 辨率约 0.15 keV。

高压衍射图谱经消除背底后根据能散公式 $E_{hkl} \cdot d_{hkl} = 6.199$ 3/sin(keV·Å)来确定衍射峰的位 置并进行指标化。共测量了 15 组数据 ,最大压力为 4.9 GPa ,其间测得第 11 组数据后进行注入并检修 仪器 ,后测得的 4 组衍射图谱中样品及压标的衍射 峰均发生严重漂移 ,在此笔者只截取前 11 组数据进 行分析 ,前 11 组达到的最大压力为 3.9 GPa。

2 结果和讨论

常温常压下十字石的 X 射线衍射图谱,与标准 图谱(JCPDS86-1379)相比,可观测到的样品衍射峰 只有 5条,空间群为 C2/m。根据 JCPDS86-1379 对 常压衍射图谱进行指标化。晶胞参数修正根据最小 二乘法原理,利用软件 UnitCell 进行(Holland and Redfern, 1997),求得常压下的晶胞参数为:a =7.894(6)Å,b = 16.533(1)Å,c = 5.684(3)Å, $\beta =$ 90.56(88)°,V = 741.89(67)Å³。

图 2 为不同压力下十字石的 EDXD 图谱。其中 标有 NaCl 的为压标物质 NaCl 的衍射峰,分别为 NaCl 200)和 NaCl 220)。由图 2 可见,随着压力的 增加,各衍射峰向高能端发生了不同程度的移动,意 味着 d 值随着压力的增大而减小(图 3),其中 ī51 和 241 峰强度随压力增加有不同程度的降低。强度 的降低可能受两个因素的影响,即高压下样品厚度 的减小造成信号的减弱以及压腔内的压力梯度导致 样品峰的展宽,使得峰形随着压力的增加而变得平 坦。而样品 221 和 ī11 峰强度则呈现异常递增的趋 势,究其原因可能是其他在常压下具相似 d 值的样 品峰(如211、311)在高压下逐渐分离(与晶胞参数计 算结果β角度增加相对照)而引起的峰强度叠加,但 考虑到能散实验的精度,对上述现象仍需进一步探 索和分析。

图 3 不同压力下的十字石晶体面网间距的变化 Fig. 3 *d*-spacing of staurolite under different pressures

从图 2 中可见,在压力达到 1.5 GPa 时,样品 311 峰位置向低能端移动同时伴随 242 峰的消失及 311、242 峰的强度异常,并且在 16.5 keV 处出现新 峰 202,继续加压至 2.7 GPa 后该峰又消失。同时, 样品 242 峰在该压力段内强度逐渐降低,直至不可 识别。这些信息可能预示着十字石的结构发生了某 种改变。

利用空间群 C2/m 计算晶胞参数(表 2)可见: 随着压力的增加,β值逐渐增大,这意味着在压力影 响下样品对称程度的逐步降低,从而解释图3中衍 表 2 不同压力下的晶胞参数及误差值

压力/GPa	a∕Å	e. s. d.	b∕Å	e.s.d.	c∕Å	e. s. d.	β / °	e. s. d.	V∕Å ³	e.s.d.
0.0	7.908	0.007	16.515	0.019	5.681	0.005	90.60	0.06	741.9	0.8
0.4	7.893	0.025	16.496	0.074	5.670	0.018	90.70	0.24	738.2	3.0
0.8	7.905	0.002	16.551	0.005	5.621	0.001	90.68	0.02	735.3	0.2
1.1	7.883	0.018	16.603	0.048	5.591	0.015	90.60	0.12	731.7	1.9
1.5	8.012	0.009	16.569	0.011	5.535	0.003	91.02	0.04	734.6	0.4
1.6	8.121	0.011	16.522	0.042	5.467	0.010	91.44	0.15	733.3	1.7
2.3	8.098	0.008	16.468	0.030	5.486	0.007	91.61	0.11	731.3	1.2
2.4	8.063	0.002	16.490	0.007	5.491	0.002	91.60	0.03	729.8	0.3
2.5	8.011	0.011	16.488	0.042	5.481	0.010	91.35	0.17	723.8	1.7
2.7	7.963	0.035	16.420	0.141	5.467	0.033	91.43	0.49	714.6	5.6

射峰 221、 $\overline{3}$ 11 等与常压下具相似 *d* 值的样品峰,在 压力递增情况下分离,并导致峰强度异常的现象。 晶胞参数 *b* 和 *c* 均随压力的增加逐渐减小,而 *a* 及 晶胞体积 *V* 在 1.5~1.6 GPa 处均有异常的增加,继 而逐渐减小。由此也说明十字石在 1.5 GPa 附近发 生了结构变化。鉴于压力增至 2.7 GPa 时衍射峰个 数和强度的明显减少,只能通过观察高压衍射图谱 中衍射峰 202 及 $\overline{2}$ 42 的消失作为其结构变化的依 据,推测其可能在 1.5~2.7 GPa 压力范围内存在相 变。

文献中没有关于十字石高压相变的研究报道。 Comodi 等(2002)的高压十字石研究中,其实验压力 虽然高达 8.74 GPa 但由于实验压力值间隔大(直接 从零压到 2.48 GPa),所以并没有观察到此压力范围 内十字石的结构变化。可以通过十字石的结构特点 以及前人对相关矿物高压结构研究的结论对本文观 察到的结构变化做定性的讨论。首先,依据 Hazen 和 Finger(1982) 对硅酸盐结构中金属氧键的研究结 论 硅酸盐矿物结构中 Si 占据的 T1 配位四面体及 Al 占据的 M1、M2 配位八面体在实验观测压力范围 内几乎未被压缩。而对于被 Fe 部分占据的 T2、M3、 M4 配位多面体 利用状态方程拟合出来的体积模量 K 分别为 104 GPa、148 GPa 和 155 GPa(Hazen and Finger, 1982),远高于实验达到的压力。此外,从结 构层本身的压缩情况来看,在8.74 GPa 压力范围 内 [Fe²⁺Al₀ 7O(OH))] 层的厚度变化仅 0.8% 左右 (Comodi et al., 2002),这不足以影响结构的改变。 因此 从理论上说本文观察的结构变化可能与多面 体和结构层的压缩或扭转无关。

其次,考虑到十字石高温衍射实验(Gibbons et al., 1981)中观察到的脱氢变化(~500℃)及 H 在

结构中的占位情况(Stähl et al., 1988)(图4), O—H键近似的平行或成一角度倾斜与 b 轴相交。 通过键长及键能的比较分析,可以推测在 [Fe²⁺Al_{0.7}O(OH)] 层中的 Fe 配位体被压缩或发 生扭转之前,结构中应经历了 O—H 键的破坏而引 起的"脱水"过程。此过程在较低压力下就可实现, 可能与本文观察到的十字石的结构变化有关。但由 于实验精度的限制,高压下十字石样品出现的衍射 峰个数很少并伴随显著的展宽变化,目前还无法了 解此结构变化的细节,尚需要进一步的研究证实。

图 4 十字石结构中 H 的占位情况 Fig. 4 The positions of H in staurolite structure

3 结论

利用原位高压同步辐射 EDXD 和 DAC 技术,在 室温和 0.000 1~3.9 GPa 压力范围内对采自新疆阿 尔泰地区冲乎尔递增变质带的天然十字石进行高压 下晶体结构的测定。实验表明,十字石样品在1.5~ 2.7 GPa 压力范围内发生了结构变化,可能是压力递 增条件下 O—H 键的破坏造成的。同时,通过晶胞 参数的计算发现β值逐渐增大,表明了十字石晶体 结构对称程度随压力增加而降低的趋势。

由于条件的限制,本文的实验并没有达到很高 的压力值,因而无法对十字石在更高压力环境中的 结构稳定性做出充分的说明。而且,变质带中的十 字石是处于一定的温度和压力平衡条件下,其晶体 结构受到温度压力的共同影响,如需要讨论其地质 方面的意义,还必须结合温度对结构的影响。这也 是今后研究中需要注意的方面。

致谢 李海建、李玉娟参加了高压实验工作,特 致谢意。

References

- Caucia F, Callegari A, Oberti R, et al. 1994. Structural aspects of oxidation-dehydrogenation in staurolite[J]. Canadian Mineralogist, 32:477~489.
- Comodi P , Montagnoli M , Zanazzi P F , et al. 2002. Isothermal compression of staurolite :A single-crystal study J]. American Mineralogist , 87 :1 164~1 171.
- Daniels L R M , Gurney J J and Harte B. 1996. A crystal mineral in a mantle diamond J J. Nature , 379 :153~156.
- Decker D L. 1971. High-pressure equation of state for NaCl , KCl , and CsC[J]. Journal of Applied Physics , 42:3239~3244.
- Ganguly J. 1972. Staurolite stability and related parageneses: Theory, experiments, and applications J. Journal of Petrology, 13:335~ 365.
- Gibbons K , Dempsey M J and Henderson C M B. 1981. The thermal expansion of staurolite $Fe_4Al_{18}Si_8O_{44}$ (OH) J J. Mineralogical Magazine , 44 : 69 \sim 72.
- Hawthorne F C , Ungaretti L , Oberti R , et al. 1993. The crystal chemistry of staurolite. I . Crystal structure and site populations J J. Canadian Mineralogist , 31:551~582.
- Hazen R M and Finger L W. 1982. Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure M]. New York : John Wiley & Sons.

- Holland T J B and Redfern S A T. 1997. Unit cell refinement from power diffraction data : the use of regression diagnostics J J. Mineralogical Magazine , 61 : 65~67.
- Koch-Müller M , Langer K and Beran A. 1995. Polarized single-crystal FTIR-spectra of nature staurolite[J]. Physics and Chemistry of Minerals , 22 :108~114.
- Makreski P, Jovanovski G and Stojančeska S. 2005. Minerals from Macedonia XIII: Vibrational spectra of some commonly appearing nesosilicate minerals[J]. Journal of Molecular Structure, 744 ~ 747:79~92.
- Náray-Szabó I. 1929. The structure of staurolite[J]. Zeitschrift für Kristallographie , 71 : 103~116.
- Náray-Szabó I and Sasvári K. 1958. On the structure of staurolite HFe₂Al₉Si₄O₂[J] Acta Crystallographica, 11:862~865.
- Poli S and Schmidt M W. 1995. H₂O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems [J]. Journal of Geophysical Research, 22:299-314.
- Richardson S W. 1966. The stability of Fe-staurolite + quartz[J]. Carnegie Institute of Washington Yearbook, 66 : 397~398.
- Schreyer W. 1988. Experimental studies on metamorphism of crustal rocks under mantle pressures J. Mineralogical Magazine , 52 : 1~26.
- Schreyer W and Chinner G A. 1966. Staurolite-quartzite band in kyanite-quartzite at Big Rock, Rio Arriba County, New Mexico[J]. Contribution to Mineralogy and Petrology, 12:223~244.
- Stähl K , Kvick Å and Smith J V. 1988. A neutron diffraction study of hydrogen positions at 13K , domain model and chemical composition of staurolite[J]. Journal of Solid State Chemistry , 73 (2):362~ 380.
- Xu Xuechun, Zheng Changqing and Zhao Qingying. 2005. Characteristics and evolution of progressive metamorphic belt in Chonghuer of the Altai Area, Xinjiang J]. Geoscience, 19 (3): 334 ~ 340 (in Chinese with English abstract).
- Zhang Cuiguang , Wei Chunjing and Qiu Lin. 2004. Evolution of metamorphism and its geologic significance in Altaides , Xinjiang [J]. Xinjiang Geology , 22 (1): $16 \sim 23$ (in Chinese with English abstract).

附中文参考文献

- 徐学纯,郑常青,赵庆英.2005.新疆阿尔泰地区冲乎尔递增变质带 特征及其演化[J].现代地质,19(3):334~340.
- 张翠光,魏春景,邱林. 2004. 新疆阿尔泰造山带变质作用演化及 其地质意义[J]. 新疆地质,22(1):16~23.