囊谦盆地贡觉组砂岩岩石学特征与物源分析

杜后发1 朱志军1 姜勇彪1 杨天南2 刘燕学2 郭福生1

(1. 东华理工大学 地球科学学院,江西 抚州 344000;2. 中国地质科学院 地质研究所,北京 100037)

摘 要:在详细观察描述砂岩宏观特征的基础上 对贡觉组碎屑岩骨架组分、常量元素变化规律进行分析,研究了该 地区砂岩的岩石学和物源特征,并指出囊谦盆地的沉积序列由下而上(Eg¹~Eg⁵)具砂岩成分成熟度由差变好再变 差的趋势。物源演变趋势分析揭示,沉积早期盆地北、西北部的构造运动强烈,为第二段(Eg²)沉积时期提供成熟度 很低的碎屑物质,而第一段(Eg¹)至第二段(Eg²)沉积时期长石含量降低而岩屑含量递增,构造强度逐渐增强,冲积 扇-河流相处于发育阶段,第三段(Eg³)层序发育时,构造运动逐渐减弱,长石含量增高而岩屑含量逐渐降低,但盆地 西北、北部继续遭受强烈剥蚀,东部和南部则下降接受沉积,并伴有岩浆活动,湖泊层序发育达到顶峰;第四段(Eg⁴) 和第五段(Eg⁵)层序沉积时转而接受过渡型再旋回造山带区,长石含量先增加后降低而岩屑含量先降低后增加。 关键词:囊谦盆地,砂岩,岩石学特征,物源演变

中图分类号:P588.21⁺2.3;P583 文献标识码:A 文章编号:1000-6524(2011)03-0401-08

Petrological characteristics and provenance analysis of sandstones of Gonjo Formation in Nangqen basin

DU Hou-fa¹, ZHU Zhi-jun¹, JIANG Yong-biao¹, YANG Tian-nan², LIU Yan-xue² and GUO Fu-sheng¹ (1. College of Earth Sciences, East China Institute of Technology, Fuzhou 344000, China; 2. Institute of Geology, CAGS, Beijing 100037, China)

Abstract: Nangqen basin is a typical representative of the medium-mini-type Paleogene basins controlled by local NNW-treading faults distributed along Jinsha River-Red River belt on the northeastern margin of Qinghai-Tibet plateau. Gonjo Formation is perfectly developed and dominated by a set of thick-bedded, purplish red, red terrigenous clastic rock formation containing gypsum rock in association with large-scale high potassium rocks in Nangqen basin. Combined with results of field geological investigation and analysis and determination of samples as well as quantitative studies of the sandstone framework detrital composition of the Paleogene strata, the authors systematically analyzed petrologic characteristics of the sandstones of the Gonjo Formation in Nangqen basin in the framework of the basin evolution. According to the analysis of geochemical features of sandstones of the Gonjo Formation, the characteristics of paleoclimate, paleoenvironment and provenance in the study area were revealed. For sandstones in different strata of Gonjo Formation, systemic sampling and determination were conducted, the detrital composition of sandstone was observed under a microscope, and the sandstone framework detrital composition was calculated and analyzed using the line-count method. The quantitative data of the clastic constituents not only constitute the nomenclature foundation of sandstones but also provide an important basis for understanding the nature of the sedimentary basin and estimating the provenance region. Meanwhile, the data

基金项目:国家自然科学基金资助项目(U0933605);中国地质调查局地质调查工作项目(1212010818096)

作者简介:杜后发(1982-),男,讲师,硕士,主要从事岩石学教学和研究工作,E-mail:dhf915@126.com。

收稿日期:2010-11-30;修订日期:2011-03-28

processing methods included the genetic classification of the clastic constituents and the triangular graphical analysis. According to the theoretical analysis and the results of Dickinson W.R, the authors analyzed and discussed the relationship between the provenance and the plate tectonics of clastic rocks of Gonjo Formation. The results indicate that the sandstones of Gonjo Formation belong to recycling orogenic belt area, and only the samples of Eg^2 came from polycyclic orogenic belt area and cratonic interior. From the viewpoint of geological features as well as the position of composition plots, it is considered that the provenance evolution began from stable cratonic interior to lithic recycling orogenic belt and polycyclic orogenic belt area. The trend of the composition maturity in the sedimentary successions from Eg^1 to Eg^5 was low-high-low. Provenance evolution analysis shows that the tectonic movement was very intense in the northern and northwest parts of the basin during the early deposition, which provided the period of the 2nd member (Eg^2) with low maturity detritus. From Eg^1 sequence to Eg^2 sequence, with the increasing strength of the tectonic movement, the content of feldspar had a decreasing tendency while that of lithoclast had an increasing tendency. And the alluvia fans, i.e., the fluvial facies were at the primary stage of development. In terms of Eg^3 , the tectonic movement began to taper off, the content of feldspar increased, and lithoclast decreased gradually, which however brought about the end of lake sequence development, with strong uplifting and erosion in northwest and north parts of the basin, the deposition heaped up in the depressions, and the existence of igneous activities in east and south parts of the basin. As for Eg^4 and Eg⁵, the provenance changed into a transitional recycled orogen, and the content of feldspar presented an increase-decrease tendency, while the tendency of lithoclast content was on the contrary. Through an analysis of the changes of the detrital composition of sandstone, Nanggen basin underwent two stages of tectonic evolution in which the early stage belonged to the reverse-compression and the late stage to strike slipping-compressional deformation. The evolution trend of tectonic evolution combined with the detrital composition changes in each sequence was studied. An analysis of the major elements of sandstones indicates that felsic rocks were dominant in the provenance, accompanied by mafic rocks. Varying tendency of chemical index of weathering (CIW) is similar to that of the chemical index of alteration (CIA) from Eg^1 to Eg^4 , and this index is used to reflect the weathering intensity from weak to strong and to weak again. Variation of the index of compositional variability indicates the circle of lower compositional maturity-higher compositional maturity-lower compositional maturity from Eg^1 to Eg^4 in the section, suggesting that geological conditions of the provenance region had significant differences. The paleo-climatic environment changed from warm-moisture through drought-hot to moisture in upward succession during the depositional period. The provenance of the sediments of Gonjo Formation was based on felsic rocks, with the provenance of Eg^3 sequence having a small quantity of mafic rocks, probably due to the movement of shear-strike slip faulting that resulted in gradual extension to the upper mantle and induced partial melting of basement materials which erupted or intruded into Eg^3 sequence.

Key words: Nangqen; sandstone; petrological characteristics; provenance evolution

中国西南部青藏东北缘横断山-金沙江-红河一 带发育众多的早第三纪盆地 因其具复杂的构造背 景、沉积地层、地貌景观以及丰富的矿产资源而备受 中外地学界瞩目(潘桂棠等, 1990; Turner et al., 1993; Molnar et al., 1993; Liu et al., 1996; 施雅 风等,1998;孙红烈,1998;顾延生等,2000;周江 羽等,2007)。囊谦盆地是横断山北段走滑拉分盆 地的典型代表 ,接受沉积较晚 ,发育较为齐全 ,侵入 该区岩浆岩的40 Ar/39 Ar(杨大雄等, 1988;朱丽等,

2006) K-Ar(邓万明等, 1999) 定年结果以及孢粉化 石、介形类化石时代(卫民 , 1985)均表明沉积物主 要形成于晚始新世——早渐新世。在沉积学方面,20 世纪90年代以来对该区充填的沉积形式、构造格架 (周江羽等,2003;张克信等,2007;姜勇彪等, 2009),岩相古地理、古水流和沉积体系(Horton et al . , 2000;王世锋等,2001;周江羽等,2002; Spurlin et al., 2005) 等进行了有益的探索,但对该 区沉积岩层的物质来源问题还存在一些认识上的分

歧。王世锋等(2001)认为物源单一,主要物源来自 于盆地东南缘;周江羽等(2002)依据原生沉积构造 认为该区早期物源主要来自于西部,晚期则来自于 东部。在前人基础之上,应用碎屑矿物的定量分析 和元素地球化学方法,对研究区的砂岩碎屑矿物成 分、常量元素进行分析,揭示盆地沉积物的物源特征 及其构造背景,有助于澄清源区和沉积区的关系,沉 积物搬运的路径、距离和物源区的地理位置。

1 地层特征

在区域上,囊谦盆地贡觉组红层形成于早第三 纪(卫民,1995;邓万明等,2001;朱丽等,2006; Spurlin *et al*.,2005),不整合于古生代、中生代地层 之上,与周围石炭系、三叠系灰色岩层地貌特征差别 显著。根据剖面控制,结合路线地质,在盆地演化的 格架内,系统分析了囊谦盆地贡觉组沉积特征及沉 积环境等方面的特征(杜后发等,2011)。按沉积充 填序列、岩性特征及岩石组合,可将贡觉组由下而上 划分为以下 5 个层段:

第1段(Eg¹)为深水湖泊相沉积,仅出露于盆地 中部西侧都日哇地区一带,下部为灰白色粉砂岩、泥 灰岩和泥质粉砂岩夹薄层泥岩,中部土灰色、灰白色 粉砂质泥岩与中薄层灰岩构成12个旋回韵律层,夹 有黑色油页岩,上部为紫红色泥岩夹粉砂质泥岩。

第2段(Eg²)为近源、快速堆积,以冲积扇-河流 相沉积为主,盆地北部广泛出露,由灰色、灰绿色和 紫红色巨厚层状砾岩、砂砾岩及少量的粉砂岩和泥 岩构成,表现出南薄北厚、南细北粗的特点。

第3段(Eg³)为一套封闭的盐湖相沉积,分布广 泛,沉积厚度显示南北厚中部薄的特点,平面分布常 有明显的分带性,垂向上随着盐度的增加,蒸发岩矿 物以相同型式周期出现,呈现紫红色粉砂质泥岩-石 膏、硬石膏、灰岩和少量的碎屑物构成的混积岩层。

第4段(Eg⁴)出露于盆地东南、西侧和中部东 侧 沉积厚度变化较大,盆地东侧沉积最厚,下部为 一套河流相为主的紫红色-红色砂岩、粉砂质泥岩和 泥岩,上部为以一套冲积扇相为主的红色砾岩、砂砾 岩。

第5段(Eg⁵)为一套以冲积扇-河流-三角洲相 为主的红色巨厚层砾岩、砂砾岩,沉积厚度大于2 300 m,垂向上见薄层状砾岩与砂岩互层,或砾岩未 见顶。

2 样品处理和分析方法

针对贡觉组地层不同层段取样 51 块,选取砂岩 进行碎屑成分定量分析。对薄片图像中的抽样点选 用线计法统计,计点的抽样工具是目镜刻度尺。利 用物台微尺标定偏光显微镜目镜刻度尺,然后对显 微镜视域内的图像进行测量和分析。线计法是人工 使用机械台等间距地移动薄片,测定纵丝或横丝通 过的全部碎屑颗粒的粒径并计数。该方法既能满足 砂岩测试的精度要求,又有很高的工作效率。对本 区 11 块砂岩薄片的碎屑矿物含量进行统计,每片统 计 350 粒,将外源碳酸盐碎屑、变质岩屑归入沉积和 变质沉积岩岩屑(L_s),半深成、变质火山隐晶岩屑归 入火山岩岩屑(L_s)。

3 分析结果

3.1 碎屑岩骨架颗粒成分

碎屑岩类成分反映了物源区性质。由于搬运过 程中稳定组分受到破坏,碎屑岩类成分并不总是与 源区岩性完全一致,尤其在潮湿环境中化学风化作 用更为强烈时,因此,详细、准确的砂岩碎屑成分定 量分析可为物源区分析和沉积盆地性质分析提供重 要依据,其可信度优于地球化学分析资料。

囊谦盆地贡觉组砂岩碎屑矿物成分统计数据见 表 1。按照囊谦盆地沉积充填序列,自下而上各组砂 岩碎屑矿物组分特征简述如下:

 E_g^1 :岩石呈土黄色,岩性为长石岩屑砂岩,石 英碎屑以单晶石英为主, Q_m/Q 为0.92(Q为总石英 质颗粒, Q_m 为单晶石英颗粒),以次圆状为主,其次 有少量的次棱角状,具有熔蚀边、炸裂纹,无波状消 光等特征,表明砂岩中的单晶石英主要来自火山岩。 多晶石英在砂岩样品中较少 Q_p/Q 为0.05(Q_p 为多 晶石英质颗粒)。岩屑含量占42%,以沉积岩屑为 主, L_s/L 为0.93(L为总非稳定隐晶岩屑),主要由 泥岩、粘土岩、少量的碳酸盐岩组成;火山岩岩屑以 火山霏细岩岩屑为主。长石含量占18%,以酸性斜 长石为主,聚片双晶纹较细,部分已绢云母化;极少 量的为钾长石,K/F为0.08(K为钾长石颗粒,F为 总长石颗粒)。碎屑颗粒边缘粘土矿物吸附 Fe^{3+} , 是 褐红色。

Eg²:岩石呈红色、紫红色,岩性为长石石英砂

表 1 囊谦盆地贡觉组砂岩碎屑矿物成分统计数据(据 Dickinson, 1983)

Table 1 Statistics of detrital mineral composition of sandstones in Gonjo Formation of Nangqen basin (after Dickinson , 1983)

序号	++	层位	岩性	Q 类(Qm+Qp)			F 类(Pl+K)			$L \not\cong (L_v + L_s + L_t + L)$			
	作丂			\mathbf{Q}_{m}	\mathbf{Q}_{p}	Q	Pl	Κ	F	L_v	L_s	L _t	L
1	ys027	Eg^1	长石岩屑砂岩	37	2	39	17	1	18	3	39	44	42
2	ys043	$Eg^2 \mathbf{T}$	长石石英砂岩	85	5	90	5	2	6	2	2	9	4
3	ys040	$Eg^2 \perp$	岩屑砂岩	30	5	34	11	2	12	9	45	58	53
4	ys034	Eg^3	长石岩屑砂岩	36	4	40	14	3	18	11	31	46	43
5	ys022	Eg^3	长石岩屑砂岩	61	4	65	16	1	17	4	14	22	18
6	ys015	Eg^4 下	长石岩屑砂岩	55	3	58	18	2	20	3	19	25	22
7	ys018	Eg^4 中	岩屑长石砂岩	55	5	60	22	5	27	3	11	19	14
8	ys010	$\mathrm{E}g^4$	岩屑长石砂岩	43	5	48	27	1	28	5	19	29	24
9	ys009	Eg^4	岩屑长石砂岩	45	8	52	32	2	34	4	10	22	14
10	ys026	Eg^5	岩屑长石砂岩	50	4	55	18	8	26	5	15	24	20
11	vs014	$F \sigma^5$	岩屑长石砂岩	55	6	61	19	2	20	4	15	25	19

注 碎屑参数:Q—总石英质颗粒;Q_m—单晶石英颗粒;Q_p—多晶石英质岩屑(燧石等);P—总长石颗粒;Pl—斜长石颗粒;K—钾长石颗 粒;L—总非稳定隐晶岩屑;L_v—火山的、半深成、变质火山隐晶岩屑;L_s—沉积和变质沉积岩屑;L_t—总隐晶岩屑颗粒(L+Q_p)。

岩、岩屑砂岩。 贡觉组 Eg² 下段砂岩碎屑主要为石 英碎屑,石英碎屑约占90%,单晶石英含量较高 85% Q_/Q 为 0.94 其形态以次圆状、圆状为主 少 量的次棱角状,部分具炸裂纹、波状消光、石英自生 加大边、颗粒较为圆滑且有方解石包体等特征、表明 砂岩中的单晶石英来自酸性火山岩、沉积岩。多晶 石英为燧石、梳妆石英 ,Q。/Q 为 0.06。 长石碎屑为 酸性斜长石、微斜长石 斜长石表面绢云母化强烈而 微斜长石表面干净 斜长石含量高于钾长石含量 K/ F为0.28。Eg² 上段砂岩碎屑主要为岩屑碎屑,以 脉石英岩屑、变质石英岩屑、千枚岩岩屑、硅质石英 岩屑和碳酸盐岩岩屑为主,其次为火山霏细岩岩屑 和花岗岩岩屑,其含量约占 53%,L/L 为 0.16, L。/L为 0.84。该层段砂岩石英含量约占 34%,以单 晶石英为主 Q_m/Q 为 0.87。长石碎屑含量为 13%, 酸性斜长石含量高于钾长石含量 K/F 为 0.13。

 E_g^3 岩石呈紫红色,岩性为长石岩屑砂岩。石 英碎屑含量占40%~65%,平均含量为52.5%,以 单晶石英碎屑为主,多为次圆状,具炸裂纹,无波状 消光,缺乏矿物包体等特征,Q_m/Q为0.91~0.93, 表明单晶石英主要来自酸性火山岩。长石碎屑为酸 性斜长石,聚片双晶单体较细,多为次圆状,颗粒边 缘被方解石交代,其含量占16%~18%,Pl/F为 0.80~0.94(Pl为斜长石颗粒)。岩石碎屑为花岗岩 岩屑、火山霏细岩岩屑、云母石英片岩岩屑、硅质岩 屑,其含量为18%~43%,L_s/L为0.73~0.79, L_s/L为0.21~0.27。

Eg⁴ 岩石呈红色,岩性为岩屑长石砂岩。石英

碎屑含量 48%~60%,平均含量为 54%,以单晶石 英碎屑为主,石英颗粒边缘被溶蚀,个别见有包裹体 和石英次生加大边等特征,多为次棱角状、棱角状, Q_m/Q为 0.85~0.94。长石碎屑以酸性斜长石为 主,聚片双晶单体较细,次棱角状,其含量占 20%~ 34%,平均含量为 27%。岩屑碎屑有云母石英片岩 岩屑、硅质岩屑、火山霏细岩岩屑,以次圆状为主,其 次是次棱角状,其含量占 14%~24%,平均含量为 18.5% L_s/L为 0.74~0.86 L_v/L为 0.14~0.21。

 Eg^5 :岩石呈暗紫红色,岩性为岩屑长石砂岩。 石英碎屑含量占55%~61%,平均含量为58%,以 单晶石英碎屑为主,见有石英颗粒边缘被方解石交 代、石英自生加大边等现象,以次棱角状-次圆状为 主,其次少量的为圆状,Q_m/Q为0.90~0.92。长石 碎屑以酸性斜长石为主,聚片双晶发育,轻微的绢云 母蚀变,偶见具有格子双晶的微斜长石,以次圆状为 主,PI/F为0.70~0.92。岩屑碎屑有火山霏细岩岩 屑、粉砂岩岩屑、硅质岩屑等,以次圆状为主,其次是 次棱角状,其含量占19%~20%,L_s/L为0.75~ 0.79 L_s/L为0.21~0.25。

3.2 砂岩常量元素特征

Taylor 和 Mclennar(1985) 提出的澳大利亚后太 古宙页岩(PAAS) 被公认为上地壳的平均化学成分, 可以作为一个地球化学标准来分析样品的地球化学 特征。贡觉组砂岩样品的常量元素分析数据见表 2。

通过与大陆上地壳平均化学成分对比,可知囊 谦盆地贡觉组碎屑岩的 SiO₂ 含量变化范围较大 (50.03% ~ 79.72%,平均为 63.72%),略高于

PAAS,说明砂岩中石英或富含 SiO。的矿物 如长石 类)含量略偏高。贫Al₂O₃(4.59%~10.73%,平均 为 6.65%),可能与砂岩中长石类、云母类和粘土矿 物等富铝矿物较少有关;贫 TiO₂(< 0.41%), P_2O_5 (<0.15%), MnO(<0.09%), K₂O/Na₂O(一般为 0.88%~7.24%,平均为3.15%)偏高,TFe+MgO (1.40%~5.46%,平均为2.64%)普遍偏低,说明贡 觉组碎屑岩源区为长英质岩石。另外,样品中 CaO 含量普遍高于上地壳的平均丰度 1.29% 是由于填 隙物中有方解石胶结物的缘故。

讨论 4

4.1 源区大地构造性质及岩石类型判别

砂岩是陆源碎屑岩的主要岩石类型、其碎屑物 质主要来源于母岩机械破碎的产物。陆源碎屑岩在 沉积建造中占据绝对优势,砂岩碎屑组分是判断物 源区母岩类型的有力证据。应用 Dickinson 和 Suczek (1979) Dickinson (1983) 先后提出的两套碎屑 成分物源区分析定量图解,对贡觉组(Eg¹~Eg⁵)砂 岩样品中的石英、长石和岩屑含量进行定量分析统

计并以 QFL、Q_FL,为端员成分进行三角图投点 (图1)在此基础上对囊谦古近纪盆地贡觉组碎屑岩 进行了物源与板块构造关系的分析和探讨。

分析结果表明,砂岩投点落入(混合)再旋回造 山带物源区 Eg² 样品落入过渡再旋回造山带物源 区和克拉通内部。结合区域地质特征,从各层段样 品的投点位置来看,反映物源由稳定的克拉通内部 物源(相当大陆块物源区)向岩屑再旋回造山带区 (碰撞造山带),再向混合型再旋回造山带区一个演 变的过程。早期北西向展布的囊谦褶皱带冲断自西 南向北东逆冲 在断层的下盘发生挠曲凹陷 形成前 陆盆地 揭示了沉积早期盆地北、西北部的构造活动 性强烈,为 Eg² 沉积时期提供成熟度很低的碎屑物 质 由 Eg^1 至 Eg^2 沉积阶段长石含量降低而岩屑含 量递增 构造强度逐渐增强 ,冲积扇-河流相层序处 于发育阶段,因此,沉积了一套巨厚层状的砾岩、砂 砾岩。中期青藏北部、东部发育大规模的走滑拉分 作用,使早期的前陆盆地演变为拉分盆地。在 Eg³ 层序发育时 囊谦盆地受东缘扎曲断裂、西侧江达断 裂控制 随边界断裂主应力由挤压转为右旋走滑拉 张,盆地面积逐渐增大,长石含量增高而岩屑含量

表 2 囊谦古近纪盆地细碎屑岩主量元素分析结果

 $w_{\rm B}$ /%

岩屑长石砂岩 长石岩屑砂岩 砂岩 岩性 均值 PAAS 样号 ys009 S2-4* S8-1* S9-2* ys 010 ys 018 ys 022 ys 034 ys 043 S1-8-1* 71.37 SiO_2 61.68 78.71 79.72 62.11 53.98 69.01 50.03 51.60 59.02 63.72 62.40 Al_2O_3 7.26 4.59 5.32 6.02 5.077.57 10.73 5.79 9.01 5.15 6.65 18.88 Fe₂O₃ 2.59 2.23 1.50 1.88 1.33 2.21 5.401.40 1.20 0.90 2.067.18 MgO 1.62 0.57 0.21 0.810.86 0.63 0.06 0.05 0.500.500.58 2.19 CaO 23.5310.23 5.714.22 15.0817.68 4.50 21.1017.7018.50 13.83 1.29 Na₂O 0.440.21 0.21 0.64 1.021.11 0.800.450.200.440.55 1.19 K_2O 1.25 0.72 1.76 0.98 1.13 1.52 1.29 1.13 1.29 1.09 1.22 3.68 MnO 0.04 0.09 0.05 0.070.070.06 0.060.05 0.06 0.04 0.06 0.11 TiO₂ 0.37 0.26 0.28 0.36 0.37 0.41 0.20 0.100.15 0.070.26 0.99 P_2O_5 0.070.060.05 0.070.070.070.070.13 0.15 0.000.080.16 0.50 FeO 0.15 0.35 0.15 0.35 0.100.15 1.60 1.10 0.700.30 LOI 1.05 9.15 5.29 4.67 13.02 15.54 5.004.09 6.00 3.10 Total 99.00 91.11 94.76 95.59 86.99 84.49 93.37 81.09 82.58 86.01 K₂O/Al₂O₃ 0.170.16 0.33 0.16 0.22 0.20 0.12 0.20 0.140.21 Al₂O₃/TiO₂ 19.62 17.65 19.00 16.72 13.70 18.46 53.65 57.90 60.07 73.57 ICV 1.25 1.31 1.34 1.38 1.45 0.78 0.56 0.41 0.43 0.86 57 72 61 50 79 75 81 66 CIA 56 76 CIW 92 88 93 78 83 69 61 62 89

Table 2 Analytical results of major elements in fine-clastic rock of Nangqen paleogene basin

样品由核工业北京地质研究院分析测试研究中心分析;* 据周江羽等(2007);Fe₂O₃为全铁;化学蚀变指数 CIA = Al₂O₃×100/(Al₂O₃+ CaO+Na2O+K2O) 成分成熟度指数 ICV=(Fe2O3+CaO+Na2O+K2O+MgO+TiO2)/Al2O3,化学风化作用指标 CIW=Al2O3×100/(Al2O3) + CaO + Na₂O)式中的氧化物质量分数均换算为摩尔数。

66

图 1 囊谦盆地贡觉组砂岩骨架成分和物源类型三角图(据 Dickinson and Suczek, 1979; Dickinson, 1983) Fig. 1 Triangular diagram showing clastic components of Gonjo Formation sandstone and provenance types in Nangqen basin (after Dickinson and Suczek, 1979; Dickinson, 1983)

逐渐降低,构造运动逐渐减弱,但盆地西北、北部继续隆升遭受剥蚀,东部和南部则下降接受沉积,并伴 有岩浆活动,湖泊层序发育阶段达到顶峰。晚期印 度板块与欧亚板块碰撞进一步加剧,由走滑拉分的 应力转变为走滑挤压应力,拉分盆地发育结束,形成 晚期的褶皱冲断带及前陆盆地。随后进入混合型过 渡型再旋回造山带区,Eg⁴、Eg⁵ 层序构造运动逐渐 减弱,长石含量先增加后降低而岩屑含量先降低后 增加。综上所述,砂岩碎屑组分变化反映了盆地的 逆冲挤压-拉分、走滑-挤压活动阶段,这种演变趋势 可从各层序的碎屑组分变化得以体现。

4.2 砂岩常量元素与碎屑组分间的关系

 K_2O/Al_2O_3 比值可区分细碎屑岩物源区岩石的 矿物成分。Cox(1995)研究表明: K_2O/Al_2O_3 比值 大于 0.5 时,母岩中具有相当多的碱性长石;若其比 值小于 0.4 时,母岩中碱性长石含量较少。囊谦盆 地贡觉组砂岩的 K_2O/Al_2O_3 比值范围介于 0.12~ 0.33 均小于 0.4 ,说明母岩中碱性长石的含量较低, 与砂岩定量分析结果相吻合。

沉积物中 Al_2O_3/TiO_2 比值小于 14 时,沉积物 的物质来源来自于铁镁质岩石;若其比值介于 19~ 28 范围内,物源为安山质和流纹质岩石(Roser and Korsch, 1986)。研究区 Eg^3 样品的 Al_2O_3/TiO_2 比 值小于 14,沉积物物源中有少量的铁镁质岩石,可能 由于横断山北段剪切-走滑断裂的活动,使得盆地基 底断裂下切至上地幔,诱发深部物质部分熔融,导致 深部熔融体的喷发或侵入该层位。其他层位样品的 Al₂O₃/TiO₂比值介于17~20之间,说明沉积物的物 质来源主要为长英质岩石。

4.3 源区的古风化作用及对古气候的指示

Chittleborough (1991) 认为相对稳定的元素氧 化物(Al₂O₃、TiO₂)和不稳定的元素氧化物(Na₂O、 CaO、MgO、K2O)可用来估计各种各样的风化强度指 标。化学蚀变作用指标 CIA 和化学风化作用指标 CIW 被广泛用于确定物源区风化特征(Nesbitt and Young, 1982; Harnois, 1988)。由于硅酸盐矿物中 CaO与Na₂O通常以1:1的比例存在,所以McLennan(1993)认为:当 CaO 的摩尔数大于 Na₂O 时, CaO的摩尔数可以取 Na₂O的摩尔数;而当 CaO的 摩尔数小于 Na₂O 时,则 CaO 的摩尔数就取 CaO 的 摩尔数。由表 2 可知 碎屑岩的 CIA 指数由 Eg^1 层 段至 Eg^4 下段逐渐降低($76 \sim 50$),再向 Eg^4 上段逐 渐增加(61~72)。Eg¹ 层段砂岩的 CIA 值最高,可 能是由于处在稳定的构造背景,经过长距离的搬运 而经受了较强的风化作用。化学风化作用指标 CIW 由 Eg^1 层段至 Eg^4 层段变化趋势与 CIA 指标一致。

碎屑岩的成分成熟度与沉积物形成的气候和构造背景相关,ICV 指数可以用来定量反映沉积物的成分成熟度,也可估计砂岩母岩组分。该区的碎屑岩 ICV 指数表明 Eg¹ 至 Eg⁴ 层段的沉积物成分成

熟度由差变好再变差的趋势,反映了物源区的地质 条件存在差异。碎屑岩 ICV 指数大于 1,常作为第 一次旋回的沉积物在构造活动的地区沉积;ICV 指 数小于 1,伴随着较强的风化作用,形成第一次旋回 陆源沉积物(Cox,1995)。研究区碎屑岩 ICV 指数 Eg¹ 层段小于 1,Eg² 至 Eg³ 层段均大于 1,且呈逐渐 降低的趋势。

综上所述,囊谦盆地贡觉组自下而上处于一个 温暖潮湿→干旱、炎热→潮湿的气候环境;贡觉组碎 屑岩所受的风化作用强度自下而上为强→弱→强; 成分成熟度具由差变好再变差的趋势。

5 结论

(1)根据宏观与显微结构的总体特征以及砂岩 碎屑成分定量分析,贡觉组自下而上砂岩类型为: Eg^1 段为长石岩屑砂岩; Eg^2 段为长石石英砂岩、岩 屑砂岩; Eg^3 段为岩长石岩屑砂岩; Eg^4 段、 Eg^5 段 为岩屑长石砂岩。

(2)囊谦盆地贡觉组碎屑岩的化学蚀变指标
(CIA)与化学风化作用指标(CIW),由 Eg¹段至 Eg⁴段变化趋势一致,即砂岩所受的风化作用强度为强
→弱→强;依据石英与长石和岩屑之和的比值以及化学组分变化指标(ICV)在垂向上的变化,由 Eg¹段至 Eg⁴段的沉积物成分成熟度具由差变好再变差的趋势;沉积时期自下而上处于温暖潮湿→干旱、炎热→潮湿的气候环境。

(3)依据 Dickinson 提出的 QFL 和 Q_mFL_t 图 解 结合构造背景和盆地的演化,可判别贡觉组砂岩 物源具由稳定克拉通内部物源向岩屑再旋回造山带 区、再向混合型再旋回造山带区一个演变的过程。

(4)囊谦盆地贡觉组砂岩的物源以长英质岩石 为主,另外,Eg³ 层段物源有少量的铁镁质岩石,可 能是由于横断山北段剪切-走滑断裂的活动使得盆 地基底断裂下切至上地幔,诱发深部物质部分熔融, 喷发或侵入该层位所致。

致谢 衷心感谢两位审稿人对本文提出的宝贵 意见。

References

sition on evolution of mudrock chemistry in the southwestern United State[J]. Geochim. Cosmochim Acta , 59:2919~2940.

- Chittleborough D J. 1991. Indices of weathering for soils and palaeosols formed on silicate rocks J]. Australian Jour. Earth Sci. , $38:115 \sim 120$.
- Deng Wanming , Sun Hongjuan and Zhang Yuquan. 1999. K-Ar ages of Cenozoic volcanic rocks from Nangqian Basin in Qinghai J]. Chinese Science Bulletin , 23(44):2554~2558.
- Deng Wanming , Sun Hongjuan and Zhang Yuquan. 2001. Petrogenesis of Cenozoic potassic volcanic rocks in Nangqian basir[J]. Geological Sciences , 36(3): 304~318(in Chinese with English abstract).
- Du Houfa, Jiang Yongbiao, Yan Zhaobin, et al. 2001. Sedimentary characteristics and environment of Nangqian Paleogene basin in Qinghai Province J]. Acta Geologica Sinica, 85(3): 383~395(in Chinese with English abstract).
- Dickinson W R and Suczek C A. 1979. Plate tectonic sandstone compositons J. AAPG. 63 :2 164~2 182.
- Dickinson W R. 1983. Provenance of North American Planerozoic sandstones in relation to tectonic setting J]. Bull. Geolsoc. Am., 94: 222~235.
- Gu Yansheng , Li Chang 'an. Guo Guangmeng , *et al*. 2000. Tectonicclimatic events and environmental change of tertiary in northeastern margin of Qinghai-Tibet Plateau J]. Geological Science and Technology Information , 19(2): $1 \sim 4$ (in Chinese with English abstract).
- Harnois L. 1988. The CIW index is new chemical index of weathering [J]. Sedimentary Geology , 55:319~322.
- Horton B k , Zhou Jiangyu , Spurlin M S , et al. 2000. Paleogene deposystems and basin evolution in the eastern Tibetan Plateau : Nangqian and Xialaxiu bains[J] Earth Science Frontiers , 7(suppl.):282~283.
- Jiang Yongbiao, Hou Zengqian, Yan Zhaobin, et al. 2009. Prototype and Evolution of the Tertiary Basin in Yushu Area J. Geotectonica et Metallogenia, 33(4): 521 ~ 529(in Chinese with English abstract).
- Liu T S , Ding M L and Derbyshire E. 1996. Gravel deposits on the margins of the Qinghai-Xizang Plateau and their environmental significance[J] Palaeogeogr. Palaeoclimat. Palaeoecol. , 120: 159 ~ 170.
- Mclennan S M. 1993. Weathering and global denudation J J. The Journal of Geology, 101:295~303.
- Molnar P , England P and Martinod J. 1993. Mantle dynamics , uplift of the Tibetan plateau , and the Indian Monsoor[J]. Reviews of Geophysics , 31:357~396.
- Nesbitt H W and Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites J J. Nature , 299 :715~717.
- Pan Guitang , Wang Peisheng , Xu Yaorong , et al. 1990. Cenozoic Tectonic Evolution of the Qinghai-Xizang M]. Beijing : Geological Publishing House , 1~165(in Chinese).
- Roser B P and Korsch R J. 1986. Determination of tectonic setting of

sandstone-mudstone suites using SiO₂ content and K_2O/Na_2O ratio [J]. Journal of Geology , 94 :635~650.

- Shi Yafeng , Li Jijun and Li Bingyuan. 1998. The Uplift in Neogene Period and Environmental Changes of Qinghai-Xizang [M]. Guangzhou : Guangdong Science and Technology Publishing House , 118~135(in Chinese).
- Spurlin M S , Yin A , Horton B K , et al. 2005. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity , east-central Tiber J]. GSA Bulletin , 117 : 1 293 ~ 1 317.
- Sun Honglie. 1998. The Form Evolution and Development of Qinghai-Tibet Plateau[M]. Guangzhou : Guangdong Science and Technology Publishing House, 76~86(in Chinese).
- Taylor S R and McLennan S M. 1985. The Continental Crust : Its Composition and Evolutior [M]. Oxford : Blackwell , 1~312.
- Turner S , Hawkesworth G , Liu J , et al. 1993. Timing of Tibetan uplif t const rained by analysis of volcanic rocks J]. Nature , 364 : 50 ~ 54.
- Wang Shifeng , Yi Haisheng and Wang Chengshan. 2001a. Sedimentary features of the Nangqian tertiary basin in Qinghai Province[J]. Journal of Chengdu University of Technology , $28(1): 13 \sim 16($ in Chinese with English abstract).
- Wang Shifeng , Yin Haisheng and Wang Chengshan. 2001b. Sedimentary facies and palaeogeography features of Nangqian Tertiary bain in Yushu district ,Qinghai [J]. Northwestern Geology , 34(1):64 ~ 67 (in Chinese with English abstract).
- Wei Min. 1985. Eogene ostracods from Nangqian in QingHa[A]. Contribution to the Geology of the Qinghai-Xizang Plateau[C], 17:313 ~325(in Chinese with English abstract).
- Yang Daxiong and Wang Peisheng. 1988. The determinations of plateau age by ³⁹Ar-⁴⁰Ar dating on Cenozoic calc-alkalic trachytes of Nangqian basin, Northern Hengduan Mountains [A]. Contribution to the Geology of the Qinghai-Xizang (Tibetan) Plateau, 19:39~44 (in Chinese).
- Zhang Kexin , Wang Guocan , Chen Fenning , et al. 2007. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogen J]. Earth Science-Journal of China University of Geosciences , 32(5): 583 ~ 597(in Chinese with English abstract).
- Zhou Jiangyu and Wang Jianghai. 2007. The Evolution of Paleogene Basins in East-central Tibet in Relation to the Early Tectonic Uplift of the Tibetan Plateau[M]. Beijing : Geological Publishing House , 1 ~96(in Chinese with English abstract).
- Zhou Jiangyu , Wang Jianghai , Spurlin M S , et al. 2003. Sedimentology and tectonic significance of Paleogene coarse clastic rocks in Eastern Tibe [J]. Acta Geologica Sinica , 77 (2): 262~271 (in Chinese with English abstract).
- Zhou Jiangyu, Wang Jianghai, Yin An, et al. 2002. Depositional pattern and tectionic setting of early tertiary basins in the NE Margin of

the Tibetan Plateau : A case study of the Nangqian and Xianlaxiu basins J]. Acta Sedimentologica Sinica , 20(1): $85 \sim 91$ (in Chinese with English abstract).

Zhu Li, Zhang Huihua, Wang Jianghai, et al. 2006. ⁴⁰ Ar/³⁹ Ar Chronology of high-K Magmatic rocks in Nangqian basins at the Northern segment of the Jinsha-Red River shear zone[J]. Geotectonica et Metallogenia, 30(2):241~247(in Chinese with English abstract).

附中文参考文献

- 邓万明,孙宏娟,张玉泉. 1999. 青海囊谦盆地新生代火山岩的 K-Ar 年龄 J].科学通报,23(44):2554~2558.
- 邓万明,孙宏娟,张玉泉. 2001. 囊谦盆地新生代钾质火山岩成因岩 石学研究[J].地质科学,36(3):304~318.
- 杜后发,姜勇彪,严兆彬,等. 2011. 青海囊谦古近纪盆地沉积特征及 沉积环境分析 J]. 地质学报,85(3):383~395.
- 顾延生 ,李长安 ,郭广猛 ,等. 2000. 青藏高原东北缘第三纪构造-气候事件与环境变近 J]. 地质科技情报 ,19(2):1~4.
- 姜勇彪、候增谦、严兆彬、等. 2009. 青海玉树地区第三纪盆地原型及 其演化[J]. 大地构造与成矿学, 33(4):521~529.
- 潘桂棠,王培生,徐耀荣,等. 1990. 青藏高原新生代构造演化[M]. 北京:地质出版社,1~165.
- 孙鸿烈. 1998. 青藏高原形成演化与发展[M]. 广州:广东科学技术 出版社,76~86.
- 施雅凤 李吉均 李炳元. 1998. 青藏高原晚新生代隆升与环境变化 [M]. 广州:广东科学技术出版社,118~135.
- 王世锋,伊海生,王成善. 2001a. 青海囊谦盆地第三纪盆地沉积学特 征[]]. 成都理工学院学报,28(1):13~16.
- 王世锋,伊海生,王成善. 2001b. 青海玉树囊谦第三纪盆地岩相古地 理研究[J]. 西北地质, 34(1):64~67.
- 卫 民. 1985. 青海囊谦早第三纪介行类[A] 青藏高原地质文集
 (17 [C] 北京:地质出版社,313~325.
- 杨大雄,王培生.1988.横断山北段囊谦盆地新生代钙碱性次粗面岩的⁴⁰Ar-³⁹Ar法评年龄测定结果[A].青藏高原地质文集(19) [C].北京:地质出版社,39~44.
- 张克信,王国灿,陈奋宁,等. 2007. 青藏高原古近纪-新近纪隆升与 沉积盆地分布耦合[J]. 地球科学. 32(5):583~597.
- 周江羽,王江海.2007. 青藏高原中东部古近纪盆地演化与高原早期 构造隆升[M].北京:地质出版社,1~96.
- 周江羽,王江海, Spurlin M S,等. 2003. 青藏高原东缘古近纪粗碎屑 岩沉积学及其构造意义[J]. 地质学报,77(2):262~271.
- 周江羽,王江海,尹 安,等. 2002. 青藏东北缘早第三纪盆地充填的 沉积型式——以囊谦和下拉秀盆地为例[J]. 沉积学报,20(1): 85~91.
- 朱 丽,张会化,王江海,等. 2006. 金沙江-红河构造带北段囊谦盆 地新生代高钾岩石⁴⁰Ar/³⁹Ar 年代学研究[J]. 大地构造与成矿 学,30(2):241~247.