Metallogenic age, formation process and prospecting direction of marble-related nephrite deposit in China
DOI:
Author:
Affiliation:

Clc Number:

P611.3;P619.28+3

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Nephrite has a long history of mining and use in China, and occupies an important position in China's jade culture. According to the occurrence, the genetic types of marble-related nephrite can be divided into contact metasomatism type (skarn-type/magmatic hydrothermal type), regional metamorphism and metamorphic hydrothermal type, in which contact metasomatidm type is the most important and the main genetic type of high-quality nephrite. According to the age of the surrounding rock, the age of the ore belt formed by zircon or mica dating in nephrite and the regional geographical location, Chinese marble-related nephrite can be divided into six ore belts: Xinjiang (the upper limit of the formation age is 450~350 Ma) of the West Kunlun ore belt, Golmud of Qinghai Pro- vince (the formation age is 300~240 Ma) of the East Kunlun ore belt, Northeast China (hematite about 250~150 Ma, Laoyu about 1 700 Ma), Southwest China, Central South(volcanic rock about 682 ±62 Ma, diabase about 260 Ma) and East China. This paper mainly summarizes the geological occurrence, mineral composition, main and trace element characteristics of the whole rock, ore-forming fluid composition, zircon/mica age, spatial distribution and metallogenic regularity of nephrite deposit from the six ore belts in China. The main mineral composition of nephrite is tremolite. The ore-forming fluid composition of contact metasomatism type nephrite deposit is mainly composed of magmatic water, meteoric water and CO2 derived from decarbonation of the surrounding dolomite marble in different proportions. The ore-forming materials of Mg and Ca come from dolomite marble, while Si and H2O come from magmatic hydrothermal fluids (such as Hetan ore belt in Xinjiang). The formation of nephrite mainly experienced contact metamorphism and metamorphic metasomatism stage, prograde metamorphism stage and retrograde metamorphism stage. The metasomatism process was dolomite marble→diopside skarn or epidote skarn→tremolite skarn (coarse-grained tremolite) and coarse-grained tremolite → fine-grained tremolite. Tremolite was mainly formed in prograde metamorphism stage. The mineralization of regional metamorphic nephrite is closely related to regional metamorphism rather than magmatic activity, the ore-forming fluid is mainly meteoric water (such as Chunchuan, South Korea). The ore forming fluid of metamorphic hydrothermal nephrite is mainly metamorphic water, and the ore-forming materials Mg and Ca come from marble, Si and H2O may come from the siliceous hydrothermal solution formed by regional metamorphism and mixed magmatism(such as Xiuyan in Liaoning Province). Nephrite mainly occurs in the areas with strong tectonic activity and sections with strong contact alteration zone between intrusive rocks and carbonate rocks. The primary marble-related nephrite deposit can be explored according to mineralization mark, tectonic mark, wall rock alteration mark, secondary deposit mark, ancient mines mark, etc.

    Reference
    Related
    Cited by
Get Citation

景云涛,刘琰,张勇,买托乎提·阿不都瓦衣提,2022,中国大理岩型和田玉矿床的成矿时代、形成过程及找矿方向[J].岩石矿物学杂志,41(3):651~667. JING Yun-tao, LIU Yan, ZHANG Yong, Maituohuti Abuduwayiti,2022,Metallogenic age, formation process and prospecting direction of marble-related nephrite deposit in China[J]. Acta Petrologica et Mineralogica,41(3):651~667.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 08,2021
  • Revised:March 28,2022
  • Adopted:
  • Online: May 17,2022
  • Published: