·综合资料.

新矿物(2001.1~2001.12)

任玉峰

(中国地质科学院 地质研究所 北京 100037)

摘 要:本文以表格的形式列出了经国际矿物学协会(IMA)新矿物与矿物命名委员会(CNMMN)批准、并于 2001 年度在各国刊物上正式发表的 35 种新矿物 其中硅酸盐包括水硅钡石、羟氟碳硅钛铁钡钠石、氯碳硅铁钡石、硅铁锶镧钠石、氯碳硅钡石、钾菱沸石、水硅锆钠石、斜方硅钠钡钛镧石、铈鲍利雅科夫矿、硅锆钛锶石、锶杆沸石、钒电气石;砷酸盐包括砷钠铜石、羟砷铅钴石、羟硅砷铁石、羟砷铁铜钙石、羟砷钙镍石、赛羟砷铜石;碳酸盐包括单斜羟碳汞石、羟碳铀石;硫酸盐包括羟硼钙矾石、铊明矾、斜方钒矾;硼酸盐包括氯硼锶钙石、硼铯铝铍石;矾酸盐包括水镁钒石 草酸盐包括水氯草酸钙石,磷酸盐包括羟碳磷铝钙石;硝酸盐包括单斜铜硝石;硫化物包括密硫铑矿、硫钙水铬矿,硫盐包括硫铋铜铅矿。氢氧化物包括羟铁镁锑锌矿、羟氯铬镁石;单质互化物包括副斜方砷。文中表格依次列出了矿物的中外文名称及化学式、晶系及晶胞参数、主要粉晶数据、物理性质、光学性质、产状及共生(伴生)组合等。

关键词:新矿物 化学式 晶胞参数 粉晶数据 物理性质 光学性质 产状

中图分类号:P57

文献标识码 :E

文章编号:1000-6524(2007)03-0285-10

受中国新矿物与矿物命名委员会委托,本文收集了2001年度在各国刊物上正式发表的经国际矿物学协会(IMA)新矿物与矿物命名委员会(CN-MMN)批准的新矿物资料。新矿物的中文冠名依据中国新矿物与矿物命名委员会的规定以及国际矿物学协会(IMA)新矿物与矿物命名委员会的有关条例来确定。下面以表格的形式列出了35种新矿物的特征。

表中参考文献的缩写和对应的全称如下:

Am. Mineral.

The American Mineralogist

Can. Mineral.

The Canadian Mineralogist

Dokl. Akad. Nauk

Доклады Академии Наук СССР

Eur. J. Mineral.

European Journal of Mineralogy

Mineral. Mag.

Mineralogical Magazine

Zap. Vseross. Mineral. Obshch.

Записки Всесоюзного Минралогического Общества

Neues Jahrb. Mineral. Mon.

Neues Jahrbuch für Mineralogie , Monatsheft

Acta Mineral. Sinica

Acta Mineralogica Sinica

Riviéra Scientif.

Riviéra Scientifique

Archs Sci. Genève

Archives des Sciences-Genève

表 1 新矿物(2001.1~2001.12)

Table 1 New minerals(2001.1~2001.12)

	Table 1 New minerals (2001.1~2001.12)							
序号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
1	Bigcreekite BaSi ₂ O ₅ · 4H ₂ O 水硅钡石	斜方晶系 空间群 Prma a=5.03(6) b=9.02(3) c=18.32(6) Z = 4	5.068(100 ¥013) 4.054(85 ¥022) 2.974(45 ¥031) 2.706(60 ¥124) 2.327(40 X 035) 2.257(75 ¥126)	白色-无色,长数毫米, 半自形板状颗粒 [100] 延长。性脆,白色条痕, 玻璃-珍珠光泽、 $\{010\}$ $\{001\}$ 完全解理,不平整 断口。 $H=2\sim3$ $D_{\mathrm{平}5}=2.66$ $D_{\mathrm{H}5}=2.76$	二轴正晶 α= 1.53√2) β= 1.53√2) γ= 1.54√2) 2V _{Ψβ} = 50√5) 2V _{ttβ} = 60° 色散中等 r<υ 无多色性 X = b Y = a Z = c	产于加利福尼亚州 Fresno 县 Big Creek 的 Esquire No. 7 claim 的 含硅钡石的片麻岩 隙中,宽度小于 0.5 mm。该矿物还产于加 利福尼亚州 Mariposa 县 Trumbull 山峰中,为 含钡硅酸盐(包括硅钡 石)透镜体的一个裂隙 填充物。	无荧光 效应	L.C.Basciano et al., Can. Mineral. 39: 761~768 (2001)
2	Bradaczekite NaCu ₄ (AsO ₄) ₃ 砷钠铜石	空剛 C2/m a=12.05(1) b=12.43(1) c=7.266(7) β=117.9(1) Z=4	3.60(21)(202) (131) 3.43(100) (112,310) 3.21(35)(002) 2.791(24) (402) 2.683(30)(240)	呈暗蓝色集合体,单晶为 0.2 mm×0.2 mm, [102]延长,主要显示 {010 } {311 } {111 }和 {112]晶面,还有许多附加晶面。金刚光泽,透明,浅蓝-白色条痕,无解理。 硬度未确定。 $D_{\text{H} = 0}$ = 4.77(1)	二轴负晶 $\alpha = 1.76(1)$ $\beta = 1.92(1)$ $\gamma = 1.96(1)$ $2V_{\text{thg}} = 50^{\circ}$ Z = b $X \wedge c = 23^{\circ}$ 多色性强 X = 紫红 Y = 绿色 Z = 绿蓝色	发现于俄罗斯堪察加 半岛的 Tolbachik 喷发 大裂隙的北部裂隙中, 与赤铁矿、黑铜矿、拉 砷铜矿、砷铜镇钠石工 长石和砷铜镁钠石共 生。有对应的人工合 成物。	属磷锰 钠石类 矿 物。 无荧光 效应。	S.K. Filatov et al., Can. Mineral. 39: 1-115—1-119 (2001)
3	Buryatite Ca(Si, Fe³+ A) [SO₄] [B(OH),] (OH),O 12H₂O 羟硼钙矾 石	六方晶系 空间群 P3 c a=11.14(1) c=20.9(5) V=225((7) Z=4	9.70(80)(100) 2.736(60)(304) 2.596(100)(312) 2.374(60)(134) 2.121(90)(136) 1.833(60)(332) 1.498(70)(248)	呈透镜状或条带状集合体,可达 $3~\text{mm} \times 10~\text{mm}$ 由分散的细粒、晕彩小片晶或罕见的达 $10~\text{μm}$ 板状晶体组成。主晶面为 $\{001\}$ 和 $\{100\}$ 。浅灰色,带淡紫色调,光泽暗淡,白色条痕, $\{100\}$ 完全解理。 $H=2.5~D_{\text{thg}}=1.895(10)$	一轴负晶,无 色。 ω=1.53χ(3), ε=1.523(3), 在红外光下, [H(OH),]]基 团 在 1235, 1190、999 和 956 cm ⁻¹ 处具 特征位移。	产于俄罗斯 Buryatiya 地区 Solongo 矿床硼镁 钙石-碳硼钙镁石矿石 钻孔井生。件气,与方解 矿、氢氧集件气, 石。该组脉件等, 石。细钙石、斜层。 一、细钙石、杂明的 一、细铁等。 一、四、四、四、四、四、四、四、四、四、四、四、平、四、四、四、四、四、四、四、	在光示色光溶稀和酸、外显蓝荧可于酸硫	S.V.Malinko et al. Zap. Vseross. Mineral. Obshch., 13(2)72~78 (2001 \(\) in Russian, English abs.)
4	Bussenite Na ₂ Ba ₂ Fe ²⁺ TiSi ₂ O ₇ (CO ₃) (OH)F 羟氟碳硅 钛铁钡钠 石	三斜晶系 空间群 P1 a = 5.419(2) b = 7.042(2) c=16.33(5) a= 102.4(1) β= 93.20(5) γ= 90.00(1) Z = 2	3.910(44)(112, 103) 3.186(100) (113,114,005) 3.055(38)(114, 113) 2.738(62)(123, 121) 2.695(32)(200, 201) 2.613(32)(122, 124)	呈弯曲的片状集合体 $_2$ ~5 cm 宽 $_1$ 0.5 mm $_1$ 5 cm 宽 $_2$ 0.5 mm $_3$ 5 kg $_1$ 7 kg $_1$ 8 kg $_1$ 9 kg $_2$ 9 kg $_1$ 9 kg $_1$ 10 kg $_1$ 10 kg $_1$ 10 kg $_2$ 110 kg $_1$ 10 kg $_2$ 110 kg $_3$ 110 kg $_$	二轴正晶 α=1.67 (2) β=1.69 (2) γ=1.73 (3) 2V=7 (1) 强色散 r>v 多色性强 X、Z = 灰黄 Y=褐橙色 Y≈a c Λ X ≈ 5 (α 为钝角)	产在方钠石、钠沸石和 方解石组成的细脉中, 脉体切割了磷霞岩,发 现于俄罗斯科拉半岛 Khibiny 碱性岩组成的 Kukisvumchorr 山中。	晶体结 构类似 硅钛钉 铁石	A.P. Khomyakov et al. Zap. Vseross. Mineral. Obshch., 13(3):50~55 (2001 \(\) in Russian, English abs. \(\)

续表 1-1 Continued Table 1-1

							Continu	ued Table 1-1
序 号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
5	Clearcreekite Hg(CO3) (OH)2H ₂ O 单斜羟碳 汞石	单斜晶系 空间群 P2/n a=6.760(4) b=9.580(4) c=10.931(4) β=105.53(5) Z=4	7.09(70 011) 5.3\(40 \) \(\bar{1}11 \) 4.6\(\Q 9 \) \(\Q 012 \) 2.831 (100 \) \(\Q 023 \), 211) 2.767(100) (\(\bar{2}1 220 \) \(\bar{3}1 \) 2.391 (40 \) \(\Q 040 \), \(\bar{2}04 \)	呈灰黄绿色自形板状晶簇,0.17 mm 长,显示{001 }和{010 }晶面。透明,玻璃光泽,性脆,灰绿黄色条痕,不平整断口。 硬度无法确定。 $D_{i+\hat{p}}=6.96$	暴线棕矿变测性显不 在会色易而其射上反示 上。 上。 以 是。 发 无代率。 以 CO ₂ 以 。	产自加利福尼亚州 San Benito 县 New Idria 地区 Clear Creek 的一个旧水银矿山的采坑中,和硫铬酸汞矿、辰砂一起分布于角砾状菱镁矿、石英中。	为羟石形荧应浓中泡象分乘分别。光,盐无,盐无。	A.C. Roberts et al., Can. Mineral. 39: 779~784 2001)
6	Cobalttsum- corite PI(Co Fe) (AsQ ₄) (Ho OH) 羟砷铅钴 石	单斜晶系 空剛 (CV/m) a=9.09(2) b=6.313(2) c=7.555(3) β=115.08(2) Z=2	4.65% (87 § 111) 4.46% (96 § 201) 3.24% (100 § 112) 3.01% (58 § 201) 2.86% (50 § 021) 2.73% (47 § 311)	呈棕色-黄色玫瑰状集合体,粒径可达 2 mm,单晶 $\{\overline{2}01\}$ 扁平 $[010]$ 延长,粒径可达 0.3 mm。晶体显示 $\{\overline{2}01\}$ $\{001\}$ 和 $\{\overline{1}11\}$ 晶面。透明,金刚光泽,性脆,浅棕色条痕,贝壳状断口, $\{001\}$ 解理。 $H=4.5$ $D_{†*=5.31}$	二轴正晶 α _H #=1.92 β=1.94(1) γ=1.98(2) 2V=70(5) 多色性强 X=浅棕色 Y=红棕色 Z=黄色 Y=b X∧c=15° (β为钝角)	产于德国 Schneeberg 中心西南约 4.8 km 的 Am Roten Berg 矿山氧 化带的堆积物中,与石 英、羟砷铁铅矿、羟砷 钙钴矿、方铅矿、萎砷 铁矿、水磷铝铅矿共 生。	无效 容热盐 中。	W. Krause et al., Neues Jahrb. Mineral. Mrn.,558 ~576(2001)
7	Cronsite Cap.《HoO》 CrS2 硫钙水铬 矿	三方晶系 空間群 R 3m R3m 或 R型 a = 3.32((2)) c= 33.29(2) Z= 3	11. 1(100 (003) 5.56(10 (006) 3.700(4 (009) 2.179(5 (104) 2.464(4 (107) 2.180(4 (1.0.10)	黑色粒状,可达 1mm ,分散于顽火辉石中。不透明,亚金属光泽,黑色条痕, $\{001\}$ 完全解理。 $H=1.5$ $VHN_{10}=98(82\sim109)$ $D_{\text{平均}}=2.51(3)$ $D_{\text{计算}}=2.55(1)$	反放射 光无内强 射光无内强 射光无内强 身	发现于俄罗斯 Norton 陨石中,与顽火辉石、 硫锰矿、陨硫铁、羟氯 铋矿和铁氧化物共生, 属于硫钠铬矿风化的 产物。		S. N. Britvin et al., Zap. Vseross. Mineral. Obshch., 130(30): 29~36(2001) (in Russian, English abs)
8	Dickthomssenite Mt V ₂ Q ₆) 7H ₂ O 水镁钒石	単斜晶系 空间群 C2/c a=38.95(2) b=7.2010(4) c=16.346(9) β=97.602(1) Z=1	9.704(100) (400) 5.843(100) (402) 3.139(90) (1202)	板状,淡金色-棕色晶体,可达 $1.5~\mathrm{mm}$ 长。玻璃光泽,白色条痕。 $\{100\}$ 完全解理。在 $589.3~\mathrm{nm}$ 光照下,半透明。 $H=2.5$ $D_{\mathrm{NM}_{\mathrm{F}}}=1.96\sim2.09$ $D_{\mathrm{H}_{\mathrm{F}}}=2.037$	二轴负晶 双反射强 $\alpha=1.6124(3)$ $\beta=1.6740$ $\gamma=1.7104(4)$ $2V_{\mp 79}=74^{\circ}(1)$ $2V_{t + \frac{1}{2}}=73^{\circ}$ $b=Z$ $c \land Y=17^{\circ}$ 红外光谱显示 O—H和 V=O (954~832 cm $^{-1}$) 的吸收。	发现于美国犹他州 San Juan 县 Firefly-Pigmay 铀钒矿码富含生的富含生的的电子, 一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	在电射速水。	John M. Hughes et al., Can. Mineral., 39 (6) 1691 ~1700(2001)
			D.					

							Contin	ued Table 1-2
序 号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据([,hkl)	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
9	Ekatite (Fe ³⁺ Fe ²⁺ , Zn)(OH) [AsO ₃], [AsO ₃ , HOSiO ₃], 羟硅砷铁	六方晶系 空间群 Phyme a = 12.TM(2) c = 5.05(1) Z = 1	11.1(30 \(\) 100\) 6.3\(\) 50 \(\) 110\) 3.220(100 \(\) 211, 220) 2.766(30 \(\) 400\) 2.420(70 \(\) (401, 410) 1.867(20 \(\) 402\) 1.67\(\) 30 \(\) 521\) 1.507(30 \(\) 701, 431)	棕黑色针状,组成树枝 状晶体,单晶长 2 mm, 宽< 0.2 mm [001]延 长 ${\it Khk0}$ }晶面不清晰。 无解理。玻璃光泽,半 透明,性脆 棕色条痕。 $H=3$ $D_{\rm thg}=4.06$	$-$ 轴正晶 ω = \sim 1.99 ε = \sim 2.08 $=$ 2.08 $=$ 2.08 $=$ 2.09 $=$ 2.09 $=$ 2.09 $=$ 4.09 $=$	产自纳米比亚 Tsumeb 矿山 ,与辉铜矿和石英 共生 ,为基质氧化的产 物。	无荧光 效应。	P. Keller ,Eur. J. Mineral. , 13 769~777 (2001)
10	Felbertalite CupPtaBisSio 硫铋铜铅 矿	単斜晶系 , 空间群 $C2/m$ $a=27.64$ $b=4.05$ $c=20.74$ $\beta=131.26$ $Z=2$	在 3.78、3.51、3.38、2.320、2.096、2.062和 2.031 Å 处显示强衍射。	晶体为 $0.5~\text{mm} \times 0.2~\text{mm}$ 。不透明,金属光泽,灰黑色条痕,性脆,不平整断口。 $\{001\}$ 完全解理。 $VHN_{25}=197\sim216~D_{\text{H}\frac{\pi}{2}}=6.948$	反白射奶性均原,微色显射,现在多的棕色,似乎是一种,现在多的棕色,如性,也是一种,如果,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种,是一种	产于奥地利 Fekbertal 山谷石英-白钨矿脉 中,总是和硫铋铅矿和 硒硫铋铜铅矿类接触。 其他伴生矿物包括斜 方辉铋铅一针硫铋 矿、辉铋矿-针硫铋、黄 铜矿。该矿物在葡萄 牙 Algaré 也有产出。	属硒硫铋铜铅矿族。	D. Topa et al., Eur. J. Miner-al., 13 961~972 (2001) D. Topa et al., Am. Mineral., 86:199(2001)
11	Fencooperite Bi ₆ Fe ₃ ³⁺ S ₈ O ₂ (CO ₃) Cl ₃ ·H ₂ O 氯碳硅铁	三方晶系 空间群 P3m1 a = 10.72(5) c = 7.08(3) Z = 1	3.89\(2\) 100\(\frac{1}{2}\) 201\() 3.14\(40\)\(\frac{1}{2}\)1\() 2.82\((90\)\(\frac{1}{2}\)20\() 2.68\(\frac{1}{2}\)80\(\frac{1}{2}\)20\() 2.20\(\frac{1}{2}\)40\(\frac{1}{2}\)22\() 2.13\((40\)\(\frac{1}{2}\)22\()	黑色他形片状,粒径 100μ m,集合体粒径可达 $2mm$ 。墨黑-灰棕色,性脆,灰黑色条痕,玻璃-金刚光泽,不透明(除边缘外),不平整-次贝状断口。 $H=4.5\sim5$ $D_{H}=4.212$ 4.338	一轴负晶 ω=1.72 (4) ε=1.71 (2) 多色性强 O=蓝黑色 E=浅绿灰色	产于加利福尼亚州 Mariposa 县 Tiumbull 峰靠近 EI 入口 出现在富含硅铁 钡矿的条带中 这条带处于硅钡石-石英透镜体中。其他共生矿物为钛 电气石、羟硅钡铁石、氯磷钡石、重晶石、透辉石和磁黄铁矿。该矿物还出现在加利福尼亚州 Fresno 县的 Esquire No. 7 claim。	效应。	A. C. Roberts et al., Can. Mineral., 39: 1059~1064 (2001) J.D. Grice, Can. Mineral., 39:1065~ 1071(2001)
12	Ferronordite- (La) NaSKLa, Ce FeSi ₆ O ₁₇ 硅铁锶镧 钠石	斜方晶系 空间群 <i>Pcca</i> a=14.44(5) b = 5.19(2) c=19.8(1) Z=4	4.21(100 (210) 3.323(82 (312) 2.964(88 (410) 2.873(99 (314) 2.595(58 (020)	无色-灰棕色,球粒状,直径可达 $1.5~{\rm cm}$,晶体可达 $1.5~{\rm cm}$,晶体可达 $1~{\rm mm}\times 5~{\rm mm}\times 8~{\rm mm}$,主要为 $\{100~\}$ 晶面。透明,玻璃-油脂光泽,白色条痕,不平整断口 $\{100~\}$ 完全解理。 $H=5~{\rm D}_{\rm Th}=3.54(2)$ $D_{\rm th}=3.62(1)$	二轴负晶 α= 1.624(1) β= 1.637(1) γ= 1.644(1) 2V _{Ψβ} =((15), 2V _{Hβ} =7(12) 色散弱 r>v X= a Z= b Y= c	产于俄罗斯科拉半岛 Lovozero 碱性岩组成的 Bol 'shoi Punkaruaiv 山中的过碱性霞石正 长伟晶岩中。该矿物 为以 La 为主的矿物, 以 Ce 为主的矿物为硅 铁铈锶钠石,常与霓 石、硅铌钛矿、菱黑稀 土矿、桃针钠石和闪锌 矿共生。	结构类 似镧锌研 钠研物。	I.V. Pelsov et al. Zap. Vseross. Mineral. Obshch. 130(2), 53—58(2001) (in Russian, English abs.)

续表 1-3 Continued Table 1-3

							Contin	ued Table 1-3
序号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据 (I "hkl)	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
133	Gmelinite-K K (K № Ca) [Al-S ₁₇ O ₈] ·22H ₂ O 钾菱沸石	六方晶系 空间群 $P6_3/mmc$ a=13.715(2) c=10.256(2) Z=1	11.9(80)(010) 5.16(70)(021,002) 4.11(100)(121,112) 3.27(70)(130,013) 2.971(80)(040) 2.852(80)(041,222) 2.719(100)(123)	无色至棕色,粒状,呈放射状时,晶体为柱状或放射状,可达 $0.1~\text{mm} \times 3~\text{mm}$,常具六边形轮廓,显示 $\{100\}$, $\{101\}$, $\{001\}$ 晶面。透明,玻璃光泽,性脆,白色条痕,贝壳状断口。 $VtN_{30} = 25(247 \sim 280)$ $H = 4$ $D_{\text{平均}} = 2.00(2)$ $D_{\text{计算}} = 2.01$	一轴负晶 ω= 1.47【1) ε= 1.47【1)	发现于俄罗斯科拉半岛 Lovozero 碱性岩组成的 Alluaiv 山中,为一种新的沸石族矿物,在角砾状伟晶岩晶洞中呈晶簇状,与钾石、霞石、角闪石、辉石等共生。	TT示始就脱室下10酸中解显开热速水温在盐液溶	A.P. Klomyakov et al., Zap. Vseross. Mineral. Obshch. 13(3): 65~7(2001) (in Russian, English abs.)
14	Kampfite Ba[(S AI) Q [(Q ₃) Q(Q HO) 氯碳硅钡 石	六方晶系 空间群 $P6_3mc$ a = 5.24(2) c = 29.8(1) Z = 1	14.67 100 (002) 3.883 100 (104) 3.357 50 (106) 2.988 (60) (0.0.10) 2.887 (50 (108) 2.616 (70 (110) 1.969 (50) (1.1.10)	浅蓝灰色 ,不规则块状集合体可达 $1 \mathrm{cm}$ 。 玻璃光泽 ,半透明 ,性脆 ,白色条痕 ,不平整断口 , $\{001\}$ 完全解理。 $H=3$ $D_{\mathrm{th}\mathrm{p}}=3.51$	一轴负晶 ω=1.642(2) ε=1.594(2) 无多色性	产出于加利福尼亚州 Fresno 县东部 Rush Creek河 Esquire No. 1 claim 处的石英-硅钡 石中。共生矿物为 钡 长石、硅钛钡石、美型银石、硅铁钡石、钛电气酸矿、碳黄铁矿。该矿物 还在 Fresno 县 Big Creek河 Esquire No. 7 claim 罕有出现。	无荧 结似铝石。	L.C.Basciano et al. Can. Mineral. 39: 1053~1058 (2001)
15	Kurgantaite CaS[B ₂ O ₃] Cl·H ₂ O 氯硼锶钙 石	三斜晶系 空间群 $P1$ a=6.57(1) b=6.44(1) c=6.39(1) v=20.9(1) $\alpha=60.99(2)$ $\beta=61.25(2)$ $\gamma=77.19(2)$ 1A 多型 Z=1	5.69(80)(100, 010) 3.22(90)(112, 11\overline{1},201) 3.13(70)(211, 01\overline{1},201) 2.92(100)(200) 2.84(90)(020) 2.79(80)(102, 122) 2.14(70)(2\overline{1},312,20\overline{1},312,20\overline{1},312,20\overline{1},312,20\overline{1},313,223)	由白色细粒组成的瘤体,直径可达4 cm(Kargan-tau 产地) ;是无色球粒时,粒径可达0.7 mm ,由金字塔形或楔形单晶组成(Chelkar 产地) 漏形差,倾斜的三角板状晶体可达0.5 mm (Nepskoye 产地)。透明,无色,白色条痕,玻璃光泽,性脆,具两个方向的中等解理。 不平整断口。 $H=6\sim6.5$ $D_{\mathbb{P}^{3}}=3.07$	二轴正晶 $\alpha = 1.63 (1)$ $\beta = 1.63 (1)$ $\gamma = 1.675 (1)$ $2V_{\text{Pl}} \le 10^{\circ}$ $2V_{\text{Hg}} = 19 \pm 19^{\circ}$ 未见散射 红外特征谱为: 3350、 1645 、 1580 cm $^{-1}$	共有4 特別 大海状 大海状 大海状 大海、 大海、 大海、 大海、 大海、 大海、 大海、 大海、		I.V.Pelsov et al., Zap. Vseross. Mineral. Obshch. 130(3): 71~79 (2001 \(\) in Russian, English abs. \(\)
16	Lannuchang- ite TIA(SO ₄)· 12H ₂ O 铊明矾	等轴晶系 空间群 Pa3 a = 12.21(5) Z = 4	7.03(54)(111) 6.11(27)(200) 4.314(100)(220) 2.801(70)(331) 2.731(35)(420)	呈他形粒状集合体 $2\sim$ 10 mm ,单晶可达 $40\sim$ 90 μ m。圆柱状少见 ,直径可达 65μ m。浅黄色-白色 ,玻璃光泽 ,透明 ,白色条痕。 $H=3\sim3.5$ $VHN=94\sim124$ $D_{\Psi\dot{\eta}}=2.22$	均质体,n=1.495。在3374、3147、1655~1648cm ⁻¹ (H ₂ O)和1131、605cm ⁻¹ (SO ₄)处有强-中等红外吸收。	产于中国贵州兴仁县 滥木厂砣汞矿床的氧 化带中,属于富砣和锅的矾石类矿物,与水绿矾、镁明矾、黄钾铁矾、 石膏、硫磺、钾明矾和 砷华共生	可水、TGA在 245℃水。 DIA线则强, C等, 处势。 S中势。	Daiyan Chen et al., Acta Mineral. Sinica, 21 (3) 271 ~ 277 (2001) in Chinese, English abs.)

							Continu	ued Table 1-4
序号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据 (<i>I "hkl</i>)	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
17	Londonite CsAl₄Be(B, Be)₂O₂s 硼铯铝铍 石	等轴晶系 空间群 P43m a=7.320(3) Z=1	3.276(35)(210) 2.9898(100)(211) 2.4410(50)(300, 221) 2.1132(70)(222) 1.9568(35)(321) 1.7759(40)(410, 322)	晶体可达 7 cm,显示 $\{110 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	均质体 n=1.693(1)	产于马达加斯加的Antandrokomby、Antsongombato和Ampanivana花岗伟晶岩晶洞中。与微斜长石、钠长石、石英、电气石、锂辉石、赛黄晶、绿宝石、铯榴石、氟磷灰石等共生。	为为硼矿 在紫下的荧应以主铝类短外具黄光。的铍类,波光弱绿效	W.B. Simmons et al., Can. Mineral., 39: 747~755(2001)
18	Lukrahnite CaCuFe ³⁺ (AsO ₄) ₂ [(H ₂ O) (OH)] 羟砷铁铜 钙石	三斜晶系 空间群 P1 a=5.45(3) b=5.53(4) c=7.39(6) α=68.4(5) β=68.4(5) γ=69.4(5) Z=1	3.41((100)(112)) 3.186(40)(012), 102) 2.927(64)(1111) 2.700(30)(211) 2.533(30)(201), 212)	呈黄色球粒状集合体, 直径可达 $0.5~\mathrm{mm}$,单晶 $<30\mu\mathrm{m}$ 。集合体光泽 暗淡 断口次金刚光泽, 透明 ,性脆 ,浅黄色条 痕。 H=5 $D_{\mathrm{H}_{7}}=4.18$	二轴晶正光性 α=1.8(1) β _H g=1.834 γ=1.8(2) 2V=3(5) 中等多色性 X=黄色 Y=Z=灰黄色 红外吸收光谱 类似于硫砷铁 铜铅石	产于纳米比亚 Tsumeb 矿山 ,与砷菱铅矾、水砷锌矿、砷钙铜石、钼铅矿 ,辉铜铜石、五英度生长(在含 Ni 的羟砷锌锰钙石上)的方式产在 德国的 S chneeberg 的 Pucher shaft ,单晶厚度 $<10~\mu m$ 。	为铅富端似属铁石无效在稀中溶羟铜一员物于铅一类应热盐缓解。砷石合类物砷锌类光应的酸慢。	W.Krause et al. Neues Jahrb.Mineral., Mon.,481~ 492(2001)
19	Miassite Rh ₁₇ S ₁₅ 密硫铑矿	等轴晶系 空间群 Pm3m a = 10.024(5) Z = 2	3.19(70 § 310) 3.02(90 § 311) 2.68(50 § 321) 2.24(90 § 420) 1.931(80 X 333, 511) 1.774(100 § 440)	粒状,可达 70 µm×100 µm 性脆 无解理或裂理。 VHN ₁₀ =730(724~736) D _{计算} =7.42	反射光下为浅灰色均质体,无内反射。代表性反射。《平,mm》为:38.3(460)39.0(500)39.0(540)39.1(580)38.8(660)	发现于俄罗斯南乌拉尔 Miass 河流上游一个小砂矿的重矿物富集物中,以包体形式产在等轴铁铂矿中,与硫铜铑矿、硫铱铑矿、硫钯矿、硫铂矿和凯碲钯矿共生。		S.N.Britvin et al. Zap. Vseross. Mineral. Obshch. 13(2), 41—45(2001) (in Russian, English abs.)
20	Micheelse- nite (Ca,Y),Al (PO ₃ OH, CO ₃)(CO ₃) (OH),· 12H ₂ O 羟碳磷铝	六方晶系 空间群 P6。 a=10.82(3) c=10.51(4) Z=2	9.3& 100 \(\) 100 \) 4.5\(\) 70 \(\) 102 \) 3.7\(\) 50 \(\) 112 \) 3.3\(\) 55 \(\) 211 \) 2.49\(\) 80 \(\) 213 \) 2.143\(\) 64 \(\) 223 402 \)	呈 纤 维 状 或 针 状 , $[001]$ 延长可达 1 mm , 1 1 1 1 1 1 1 1 1 1	一轴负晶 ω=1.53ζ(1) ε= 1.50ζ(1) 显示 (C) ₂ ² -和 Η ₂ Ο 红外吸收 谱带	为格陵兰 Narsaarsuup Qaava 地区 Nanna 或 Narssarssuk 伟晶岩晚期 热液产物。该矿物还产 于 Poudrette 采石场。 Mont Saint-Hilaire 和魁北克赋存于伟晶岩、角岩、 大理岩包体和硅酸盐晶洞中。	属酸钙类荧应稀中冒无根矾。光,盐强泡。统的石无效在酸烈。	A. M. McDorald , Neues Jahrb. Mineral. Mon. , 337~35(2001)

							Continu	终表 1-5 ued Table 1-5
序号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
21	Natrolemoy- nite N ₄₄ Zr ₂ Si ₁₀ O ₂₆ ·9H ₂ O 水硅锆钠 石	単斜晶系 空间群 C2/m a=10.5150(2) b=16.253(4) c=9.1020(3) β=105.46(2) Z=2	8.13\(\)(100\(\)(020\)) 5.97\(\)(40\(\)(021\)) 3.97\(\)(35\(\)(201\)) 3.56\(\)(40\(\)(221\)) 3.49\(\)(35\(\)(\)(\)(\)(222\))	呈结实的放射状集合体 或球状,可达 4 mm,由 刀刃状-核柱状晶体组 成	二轴负晶 $\alpha=1.533(1)$ $\beta=1.559(1)$ $\gamma=1.567(1)$ $2V_{\Psi 29}=63(1)$ $2V_{H} = 57(1)$ 色散弱 $X=b$ $Z \land a=40^{\circ}$ (β 为钝角) 无多色性	与微斜长石、水钠钙锆 石、水钠钙铁石、水钠钙铁石、纤铁矿、方铅矿、石、大铅矿、石、铁石、铁矿、田里公园、铁丁里公园、铁田、石、等品、铁石、铁石、铁石、铁石、铁石、铁色、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、	无荧光效应。	A. M. McDanald and G. Y. Chao, Can. Mineral., 39:1295 ~ 1306 (2001)
22	Nickellothar- meyerite C(Ni Fe) (AsO ₄) (H ₂ O OH) 羟砷钙镍 石	単斜晶系 空间群(2/m a=9.00(1) b=6.20(1) c=7.41(1) β= 115.3(1) Z=2	3.39(55 \(\)20\(\bar{2} \) 3.18\(76 \(\)11\(\bar{2} \) 2.96\(\)100 \(\)201 \) 2.81\(66 \(\)021 \) 2.70\(66 \(\)31\(\bar{1} \) 2.53\(75 \(\)22\(\bar{1} \)	呈皮壳状 0.5 mm 集合体 ,单晶可达 $100 \mu\text{m}$, $\{\bar{1}01\}$ 遍平 $[010]$ 延长。透明 ,次金刚光泽 ,棕色 -黄色 ,性脆 ,浅棕色条痕。无解理 ,贝壳状断口。 $H=4.5$ $D_{\text{H}}=4.45$	二轴正晶 α ₁ 4 = 1.80 β = 1.81(1) γ = 1.87(2) 2 V = 40(5) 3 色性强 X = 黄色 Y = 棕色 Z = 灰黄色 Y = b X ≈ c	产于德国萨克森地区 Schneeberg-Neustädtel 的 Pucher shaft 氧化带 的堆积物中,与石英、 砷羟铅铁石、羟砷钙铁 石、菱砷铁矿、翠砷铜 铀矿、钡毒铁石和羟砷 铜铁钙石共生。	成结羟锰有无效可溶热酸分构砷钙关荧 返缓解稀中机与锌石。光。慢于盐。	W. Krause et al., Neues Jahrb. Mineral. Mon., 558— 576(2001)
23	Novgorodovaite Ca(C ₂ O ₄) O ₂ ·2H ₂ O 水氯草酸 钙石	単斜晶系 空间群 12/m a=6.99(3) b = 7.382(3) c =7.44(3) β= 94.(1) Z=2	5.06\(\chi 70 \) 110\() 4.32\(\chi 70 \) 11\(\bar{1}\) 1\(\bar{1}\) 4.06\(\chi 70 \) 111\(\bar{1}\) 2.95\((80 \) 21\) 2.91\(\chi 100 \) 112\()	呈集合体,单晶可达 7 mm。透明,无色,性脆,具 $\{100\}$ 和 $\{010\}$ 解理。 $H=2.5$ $D_{\mathrm{Ph}}=2.38(1)$ $D_{\mathrm{H}}=2.40(2)$	二轴负晶 α = 1.565(2) β = 1.645(2) γ = 1.725(4) $2V_{\text{Pl}3}$ =85(10) $2V_{\text{H}\sharp}$ =87(3)	发现于哈萨克斯坦西部 Chelkar 盐丘蒸发岩 850~900 m 深的岩心断面上,与硬石膏、石膏、盐岩、水氯镁石、菱镁矿和氯羟硼钙石共生。有相应的人工合成物。		N. V. Chukanov et al., Zap. Vseross. Mineral. Obshch., 130 (4): 32 ~ 35 (2001) (in Russian, English abs.)
24	Orthojoa- quinite(La) Be ₂ Na(La, Ce)Fe ²⁺ Ti ₂ Si ₈ O ₂₆ (OHOF) ·Ho 斜方硅钠 钡钛镧石	斜方晶系 空间群 Cemm a=10.539(10) b=9.680(5) c=22.345(10) Z=4	共有 47 条 从 7.09~1.397Å 的粉末衍射线	棕色,具丝状光泽,透明,{001)解理完好。 VHN=350~430 H=5 D _{测定} =4.1 D _{计算} =4.14	二轴正晶 α = 1.754 β = 1.760 γ = 1.797 $2V_{\Psi 29}$ = 45° Z = c 多色性强,黄绿色 Z > X	属硅钠钡钛石类,富La。产于格陵兰南部Ilímaussaq 碱性杂岩的霞石-方钠石正长伟晶岩中。	Smenov et al. (Am. Mineral. 52 1762 ~1769, 1967)曾 描述过 该广物。	S. Matsubara et al. Can. Mineral. 39 757 , ~760(2001)
25	Orthomina- sragrite V ⁴⁺ Q(SQ ₄) (H ₂ O) ₈ 斜方钒矾	斜方晶系 空间群 Pnn2 ₁ a = 7.24(4) b = 9.33(6) c = 6.21(4) Z = 2	4.699(100B) (101 \(\rho\)20) 3.32\(\frac{50}{6}\)121) 2.863(40\(\frac{6}{2}\)20) 2.602(30\(\frac{7}{2}\)21, 131\(\rho\)22)	呈皮壳状或花瓣状,由 圆形集合体组成,可达 200μ m,不规则蓝色颗粒。玻璃光泽,灰蓝色 条痕,无解理。 $H=\sim 1$ $D_{\rm trip}=2.001$	二轴正晶 $\alpha=1.52$ (2) $\beta=1.53$ (2) $\gamma=1.53$ (2) $2V_{\text{Tip}}=2^{\circ}$ $2V_{\text{Hip}}=0^{\circ}$ 无多色性 X=b Y=c Z=a	产于美国犹他州 E-mery 县 North Mesa 矿山三叠纪 Shinarump砾石层中硫化的硅化木中。因氧化产生了各种铁硫酸盐、自然硫、钒矾、斜方钒矾和无法确定的钒硫酸盐。	无效合以(有多其种于钒斜矾) 为(1) 为(1) 为(1) 为(1) 为(1) 为(1) 为(1) 为(1	F.C. Hawthome et al. Can. Mineral. 39: 1325~1331 (2001)

_							Contin	ued Table 1-6
序 号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据 (I "hkl)	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
26	Oswaldpectersite (UO ₂)(CO ₃ (OH) ₂ · 4H ₂ O 羟碳铀石	単斜晶系 空间群 P2/c a=4.142(6) b=14.09(3) c=18.374(5) β=103.62(1) a:b:c=0.293: 1:1.3033 Z=4	8.95(65 1002) 7.54(63 1012) 4.55(96 1031) 4.26(60 1014) 3.46(62 1015) 3.32(100 114) 3.029(85 1043) 2.273(62 1062)	呈微小的棱柱状,放射 状集合体,单晶 $0.1~\mathrm{mm}$ \times $0.01~\mathrm{mm}$ \times $0.002~\mathrm{mm}$ 晶面条纹发育。淡黄色,透明,玻璃光泽,灰黄色条痕。针状习性,显示 $\{100\}$ $\{010\}$ $\{001\}$ 晶面。解理和裂理平行于延长方向。性脆,不平整断口,棕色条痕。 $H=2\sim3$ $D_{\mathrm{thf}}=4.54$ (实际) $D_{\mathrm{thf}}=4.50$ (理想)	二轴负晶 α=1.58(2) β=1.66(2) γ=1.71(2) 2V _{i†} = 67.4(2) Z // α 正延性 X,Y=深灰黄色-无色 Z=灰黄色	发现于美国犹他州 San Juan 县 Jomac 铀矿山,产在三叠纪 Shinarump 砾岩所夹的粉砂岩中,沿层面分布。共生矿物为石膏、赤铜矿、纤铁矿、钨铜矾、针铁矿、水镍铜硝矾石、硅镁铀矿和 2 个未知含铀矿物。	无效 可于酸 冒制	Renaud Vochten et al., Can. Mineral., 39: (6),1685~1689 (2001)
27	Pararseno- lamprite As _{0.94} Sb _{0.05} S _{0.01} 副斜方砷	斜方晶系 空间群 Pnn2。 或 P2 ₁ nm a=3.363(2) b=10.19(2) c=10.31(2) Z=18	5.17(100 (002) 4.60(24 (012) 3.259(58 (013) 2.840(27 (032) 2.580(22 (004) 2.299(23 (024) 1.794(26 (105)	由刀刃状晶体组成平行 或放射状集合体(001) 扁平 $[100]$ 延长 ,可达 0.8 mm。铅灰色 ,金属 光泽 ,不透明,黑色条 痕 ,可切割。 $H=2\sim2.5$ $VHN_{25}=66\sim91$ $D_{\rm 平均}>5.88(5)$ $D_{\rm tip}=6.01$	反射光浅具白蓝反平方灰直)自蓝反平方灰直)自暗色反射光彩,以为 13.5 28.0 (546) 44.8 39.9 29.7 26.0 (650) 4.9 40.3 29.2 26.0 (650)	产于日本九州 Oita 辖区 Yamaga-cho 的 Mukuno 矿 山 Sb-As-Ag-Au 热液矿床中,为自然砷的多形,与石英、辉锑矿共生,常常在胶粒结构的砷的表面过度生长。	自然种 的一种。	S. Matsubara et al., Mineral. Mag., 65:807 ~812(2001)
28	Polyakovite (Ce) (REE Ca), (Mg Fe ²⁺) (G ³⁺ Fe ³⁺) (Ti ,Nb), Si ₄ O ₂₂ 铈鲍利雅 科夫矿	単斜晶系 空间群 C2/m a = 13.3%(1) b=5.6974(5) c=11.04(2) β=100.53(2) Z=2 形貌上,三 轴比例 a:b:c =2.320:1: 1.922	5.44(40 ¥002) 3.18(50 ¥311) 3.15(40 ¥312) 2.849(40 ¥020) 2.715(100 ¥004) 2.160(45 ¥421)	他形等粒状,可达 2.5 cm。呈自形晶时 [010] 延长可达 2 mm ,显示 $\{100$ $\}$ $\{001$ $\}$ $\{201$ $\}$ $\{201$ $\}$ $\{110$ $\}$ $\{111$ $\}$ $\{112$ $\}$ $\{112$ $\}$ 和 $\{302$ $\}$ 晶面。几乎形同硅钛酸铈钇矿。黑色,玻璃光泽,性脆,浅棕色条痕,薄碎屑半透明,贝壳状断口。 $H=5.5\sim6$ $D_{\rm Thip}=5.05$ 退火)	均质 ,反射光 下呈 灰色 , 1.931 < n < 1.935 ,紅外光 谱特征同硅 钛酸铈钇矿	产出于俄罗斯南乌拉尔 Ilmen Natural Reserve 的 N97 矿山,与方解石、白云石、氟钠透闪石、金云母、镁橄榄石、独居石(Ce)和硅镁石、独居石石出现全一碳酸盐岩脉中及金岩一中。		V. A. Popov et al., Can. Mineral., 39:1095 ~1104(2001)

							Contin	ued Table 1-7
序 号	矿物名称 及化学式	晶系及晶胞 参数(Å)	主要粉晶数据	物理性质	光学性质	产状及共生 (伴生 <i>)</i> 组合	其他	参考文献
29	Rengeite Sr ₄ ZrT ₄ S ₄ O ₂₂ 硅锆钛锶 矿	单斜晶系 空间群 P2/a a = 13.9(1) b = 5.67(7) c = 11.9(1) β= 114.2(8) Z = 2	3.12(s)(40-3) 3.05(vvs)(31-3) 2.99(vs)(311) 2.84(s)(020) 2.74(s)(004) 2.20(s)(31-5)	他形粒状 ,透明 ,深绿棕色 ,途刚光泽 ,灰绿棕色 条痕 ,无解理。 $H=5\sim5.5$ $VHN_{100}=606\sim698$ $D_{\rm thg}=4.12$	二轴负晶。由于其折级别别。由于其石般,无射不多。是一次,于射色性。如,不到,是一次,不到,是一次,不是一次,不是一个。如果,不是一个。如果,不是一个。如果,不是一个。如果,不是一个。如果,不是一个。如果,不是一个。如果,不是一个。如果,我们是一个。如果,我们是一个。	发现于日本中部 Niigata 辖区 Itoigawa-Ohmi 郊区 产在含钛绿河石一硬玉岩组成石、锆河河石、特轴锶钛石共生 ,为高温高压变质质相石、锐钛矿、榍石和生生 ,放钛矿、榍石石与含锶变质流体反应结晶的产物。	为 Sr的钇 一铈类 物紫下光应含 在硅矿钛矿矿在光荧效	H. Miyajima <i>et al.</i> , Mineral. Mag. , 65(1): 111~120(2001)
30	Rinmanite Zn ₂ Sn ₂ Mg Fe ₄ O4(OH) 羟铁镁锑 锌矿	六方晶系 空间群 Pt ₉ mc a = 5.989(4) c = 9.35(1) Z = 1	5.19(20)(100) 3.47(34)(102) 2.99(43)(110) 2.67(44)(103) 2.522(100)(112) 1.660(28)(213) 1.517(33)(205) 1.497(54)(220)	自形晶,棱柱状,可达 0.5 mm 长 [001]延长, {100]解理完好。黑色, 边缘半透明,暗红色,次 金刚光泽,棕色条痕,参差状断口。	$-$ 轴晶负晶 ω = 2.10 ε = 2.04 O = 黑红色 E = 桔红色 中等 不均 一性 具弱双反射。反射。反射。反射。 [R ₁ R ₂ nm): 13.5,12.1 (470),12.9 11.8 (546) 12.6 μ = 11.3 (650)	发现于瑞典中南部 Dalarna 的 Garpenberg Norra 矿山 ,产在夕卡岩中 ,与透闪石、锰铁闪石、锰铁闪石、霜石、神疾、晶石、重层岩为低流 Zn、大生。碳酸盐、富含 Zn、Sb、Fe、水压相对较全,在进变质过程中生成该矿物。	与黑钒结构同。	Den Holtstam et al. Can. Min- eral., 39 (6): 1675~1683 (2001)
31	Rouaite Cu(NO;) (OH); 单斜铜硝 石	单斜晶系 空间群 P2 a = 5.59(2) b = 6.07(2) c = 6.92(3) β= 94.6(2) Z = 2	6.9(100 001) 3. 457(90 X 111, 002) 2.669(80 0 120) 2.463(80 0 121)	全孤立的晶体 (001)扁平; 呈集合体可达 0.5 nm 晶 粒 010 延长 (001)压扁; 呈等粒状,可达 0.1 nm。 暗绿色 玻璃光泽 ,透明, 性脆 ,绿色条痕。参差状 断口。 {001 }完全解理,可 见到 {001 } {100 } {101	二轴正晶 $\alpha=1.700(2)$ $\beta=1.715(2)$, $\gamma=1.738(2)$ $2V_{\text{TP}}=8(2)$ $2V_{\text{H}}$ $\beta=1.715(2)$ 强色散 $r< v$, $a \wedge \alpha = 5^\circ$, $b=\beta$, $c=\gamma$; $\beta=1.73$ β	产于法国东 Alpes-Maritimes 地区 Roua 老铜矿山铜矿 证铜矿山铜矿 的晶态 形。其侧,为他其生银、矿的的物微硫矿、橄铜石、赛混矿。橄铜石、赛泥面,有一个大量,不是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	可于 酸溶 水炭应。	H. Sarp et al., Riviéra Scientif., 85 3~12(2001) (in French with English abs.)
322	Theoparacelsite Cu.(OH) As ₂ O ₇ 赛羟砷铜石	斜方晶系 空间群 Pnnna a = 8.321(8) b=2.937(3) c = 4.664(5) Z = 2/3	3.104(100 § 201) 2.484(70 § 011) 2.400(25 § 210) 1.673(30 § 212) 1.594(25 § 411) 1.330(25 § 601, 221)	呈他形粒状晶体, 0.2 mm× 0.1 mm× 0.05 mm 或呈更小的等粒状晶体,或呈更上长, $\{001\}$ 压扁,显示 $\{001\}$ $\{100\}$ $\{110\}$ $\{110\}$ $\{110\}$ $\{110\}$ $\{110\}$ $\{100\}$ $\{110\}$	二轴正晶 α= 1.8(1) β= 1.8(1), γ= 1.8(1), 2V _{Ψη} =5(3), 2V _{iff} =5(1) 中等色散 r>v X=a Y=c Z=b 中等多色性 α=浅橄榄绿 β=橄榄绿 γ= 暗绿色	产于法国 Alpes-Maritimes 地区的 Roua 铜矿露头中,分布于 1mm 大小的赤铜矿高羟砷铜石、硫、新铜矿、石、斜铜、微晶,微晶,微晶,似等共生。	无荧光, 效可溶 于酸。	H. Sarp and R. Cemy, Archs Sci. Genève, 54: 7~14(2001)

续表 1-8 Continued Table 1-8

							Continu	ued Table 1-8
序 号		晶系及晶胞 参数(Å)	主要粉晶数据 (I "hkl)	物理性质	光学性质	产状及共生 (伴生)组合	其他	参考文献
333	Thomsonite-Sr (Sr Ca)Na [AsSsOn] 6~7HO 锶杆沸石	斜方晶系 空间群 Pcm a=13.05((2) b=13.12(2) c=13.24(2) Z=4	4. 66(80 X 022 , 220) 3. 49(90 X 312 , 321) 3. 19(80 X 223 , 232 322) 2. 960(100 X 024 , 204 042) 2. 860(100 X 142 , 241 412) 2. 691(100 242)	楼柱状晶体, $0.2 \text{ mm} \times 0.2 \text{ mm} \times 1 \text{ mm}$,具 $\{100 \{010 \{001 \} 110 \} 110 \} $	二轴正晶 α=1.528(2) β=1.532(2) γ=1.54((2) 2V _{Ψβ} =6((12) 2V _{Hβ} =7((5)) 弱色散 r>v X=a Y=c Z=b	产于俄罗斯特拉地成,特别的 Rasvumchorr 和 H H H H H H H H H H H H H H H H H H	该以含主 Ca 端钙石。	I. V. Pekov et al., Zap. Vseross. Mineral. Obshch., 130(4):46~55 (2001 X in Russian, English abs.)
34	Vanadium- dravite NaMe3V6 [Si ₆ O ₁₈] [BO ₃] ₈ (OH) ₄ 钒电气石	六方晶系 空间群 R3m a = 16.12(1) c = 7.39(1) V = 1662(3) Z=3	6.54(90)(101) 4.04(80)(220) 3.57(70)(012) 3.04(90)(410) 2.62(100)(051) 2.07(90)(152) 1.95)(50)(342)	呈棱柱状晶体,宽 0.15 mm~0.2 mm,长 0.5 mm × 2 mm, 自形~半自形。核柱的{100}{110}晶面清楚.101 和 (0.21)推面不确定。黑色.绿色条痕带有黄棕色调。树脂光泽.性脆贝壳状断口。{101}和{110}不完全解理。 H = ~7.5 VHV ₅₀ =1417(1210~1530) D _{平均} = 3.33(2) D _{计算} =3.33(1)	一轴负晶 ω= 1.78(5) ε= 1.72(4) 多色性强 O=深棕绿色 E=黄绿色 O>E	产南杂但近别中一大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	属电东流数。	L. Z. Reznitsky et al., Zap. Vseross. Mineral. Obshch., 130(2):59~72 (2001)(in Russian English abs.)
35	Woodallite Mg ₆ Cr ₂ (OH) ₆ C ₂ · 4H ₂ O 羟氯铬镁 石	六方晶系 空间群 $R3m$ a = 3.10(2) c = 24.11(24) Z = 3/8	8.037 (100)(003) 4.021 (48)(006) 2.679 (1)(009) 2.624 (3)(012) 2.349 (5)(015) 2.007 (6)(0,0 , 12) 1.698 (2)(0,1 , 11) 1.524 (2)(213)	螺旋状或细片状集合体,可达6 mm 单晶 10 - 100 μm 晶面常弯曲。深红紫色,透明,树脂-腊状光泽,(0001)底面完全解理。灰粉色-白色条痕 H=1.5~2 D+p=2.062	一轴负晶 ω=1.555 ε=1.535 紫色-淡红紫 色多色性	产于澳Goldfields Keith 镍包尔 Keith 镍包尔 特	为富铬 的水类。 TGA 显示~ 300℃ 失 12.7%, 在 300 ~660℃ 失 27.3%。	B. A. Grguric et al., Mineral. Mag., 65 (3): 427~435(2001)