阿拉善地块南缘龙首山岩群及相关岩石的起源和归属

——来自 LA-ICP-MS 锆石 U-Pb 年龄的制约

宫江华 ،张建新 ,于胜尧

(中国地质科学院 地质研究所,北京 100037)

摘 要:采用 LA-ICP-MS 方法对采自阿拉善地块南缘龙首山岩群及上覆的墩子沟群底部共 6 个不同类型的样品进 行了锆石 U-Pb 测年 获得龙首山岩群上部变沉积岩中的碎屑锆石年龄集中在~2.01 Ga 和~2.15 Ga,花岗质片麻 岩的岩浆锆石年龄主要在 2.04~2.17 Ga 之间,变质重结晶(增生边)的年龄在 1.89~1.93 Ga 之间,表明龙首山岩 群的形成时代为古元古代。获得龙首山岩群中斜长角闪岩中变质锆石年龄为~1.85 Ga,指示古元古代晚期龙首山 岩群经历角闪岩相区域变质作用;上覆的墩子沟群底部变沉积岩的碎屑锆石 U-Pb 年龄测定集中在 2.03~2.05 Ga 之间,表明其物源来自古元古代的岩浆岩。这些年龄资料显示龙首山岩群及相关岩石所代表的阿拉善地块南部在 早前寒武纪与华北克拉通具有明显亲缘性。

关键词:LA-ICP-MS;U-Pb年龄,龙首山岩群,阿拉善地块 中图分类号:P588.3;P597⁺.3 文献标识码:A

文章编号:1000-6524(2011)05-0795-24

The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: constraint from LA-ICP-MS U-Pb zircon dating

GONG Jiang-hua, ZHANG Jian-xin and YU Sheng-yao (Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract: The Longshoushan Group is a part of Precambrian metamorphic basement of the Alxa block. Its origin is particularly important for constraining the western boundary of the North China Craton(NCC) and understanding the evolutionary history of China's cratons. In this study, LA-ICP-MS U-Pb dating technique was used to determine the ages of different rocks from Longshoushan Group and Dunzigou Group. The analytical results of detrital zircon grains from the metasedimentary rock in the Longshoushan Group gave two age populations: ~ 2.01 Ga and ~ 2.15 Ga. The magmatic zircons and metamorphic zircons from the granitic gneiss yield age spans of $2.04 \sim 2.17$ Ga and $1.89 \sim 1.93$ Ga, respectively. These ages indicate that the Longshoushan Group yielded a metamorphic age of ca. 1.85 Ga, indicating that the Longshoushan Group underwent an amphibolite facies metamorphism during late Paleoproterozoic. Detrital zircon ages of the metasedimentary rock from the overlying Dunzigou Group vary from 2.03 to 2.05 Ga, suggesting a single Paleoproterozoic provenance. These data imply that the southern Alxa block had an affinity with the NCC during early Precambrian period. **Key words:** LA-ICP-MS; U-Pb age; Longshoushan Group; Alxa block

收稿日期:2011-06-20;修订日期:2011-07-07

基金项目:公益性行业科研专项经费资助项目(201111058)

作者简介:宫江华(1984 -),男,博士研究生,构造地质学专业,E-mail:ba-ma521@163.com;通讯作者:张建新(1966 -),男,研究员,主要从事造山带的变质变形作用研究,E-mail:zjx66@yeah.net。

龙首山岩群被认为是华北板块西缘阿拉善地块 变质基底的组成部分(任纪舜等,1980;潘杨杨, 1986 :李文渊 .1991 :张新虎 .1992 :白瑾等 .1993 :刘 雪亚等 1993 ;张新虎等 2005) 因其分布在河西走 廊东北侧的龙首山而得名。关于其地质年代及归属 问题一直存在争议。早期有人将龙首山岩群归为太 古宙(潘杨杨,1986;宫保军,1986)。甘肃省地质矿 产局(1989,1997)对龙首山岩群不同类型岩石进行 了全岩 Rb-Sr 等时线测定,获得从古元古代晚期到 太古宙早期不同的年龄信息:汤中立等(1999.2000) 报道龙首山岩群下部岩段时代为太古宙,上部岩段 为古元古代 近年有一些新的较精确的年代学数据, 将龙首山岩群主体划为古元古代(修群业等,2002, 2004;陆松年等,2002);董国安等(2007)利用 SHRIMP 定年法,对龙首山岩群最上部层位变沉积 岩中碎屑锆石进行了详细的定年,结果显示碎屑锆 石年龄主要介于 1.7~2.2 Ga 之间,峰值在 1.8~ 2.0 Ga 其余在 2.3~2.7 Ga 之间,其中最年轻年龄 为 1 724 ± 19 Ma 认为最大沉积年龄小于 1 724 ± 19 Ma 显示龙首山岩群的上部层位形成时代可能晚于 古元古代。因此龙首山岩群是否存在太古宙岩石, 其主体究竟形成于古元古代还是一直持续到中元古 代 还需要更多精确的年代学证据。

在龙首山北部、邻区的阿拉善地块变质基底中 也有许多古元古代年龄报道(李俊健等,2004;沈其 韩等 2005 耿元生等 ,2006 ,2007 ;周红英等 ,2007)。 一些学者认为 龙首山岩群与相邻的北大山群、传统 的阿拉善群在岩石组合、地层及年代学等多方面具 有可对比性(刘雪亚等,1993;修群业等,2004)。龙 首山作为阿拉善地块的一部分,共同经历了结晶基 底形成、稳定盖层沉积过程、构成阿拉善地块二元结 构。然而龙首山岩群与阿拉善岩群也存在明显的区 别 如阿拉善地块有明显的太古宙岩石记录(耿元生 等 2006) 而在龙首山至今仍未有令人信服的太古 宙岩石证据,那么龙首山作为阿拉善地块的边缘隆 起带究竟经历了怎样的地质演化史,是一个迫切需 要解决的问题。阿拉善地块的归属本身也存在较大 的争议,有学者认为它是华北克拉通的一部分(任纪 舜等 ,1980 ;万渝生等 ,2003);有学者认为不是华北 克拉通基底的组成 ,而是新元古代或更晚拼贴到华 北克拉通西缘的块体(王惠初等,2005);有学者认为

它是晋宁期从华北板块分离出去的小块体(杨振德 等,1988)还有学者认为阿拉善、塔里木、柴达木在 新元古代早期形成同一基底,称为西域板块(王云山 等,1987;葛肖虹等,1999,2000)。这些争论至今没 有统一的认识,所以探讨龙首山岩群的起源与归属 问题对解决阿拉善地块的起源与演化历史十分关 键。

本文报道了6个分别采自龙首山岩群的变沉积 岩、花岗片麻岩及上覆的墩子沟群变沉积岩样品的 锆石 U-Pb 年龄,以此构建龙首山地区前寒武基底的 形成与演化史,并结合区域对比,探讨龙首山岩群的 起源与归属。

1 地质背景

龙首山位于华北克拉通西部阿拉善地块西南缘 (汤中立等,1999,2000),北为中亚造山带,南临祁连 造山带,西北接塔里木板块(图1a)。龙首山整体呈 NW-SE 向狭长带状分布,向东逐渐转为近 EW,北以 龙首山北缘断裂临潮水盆地,南以龙首山断裂接河 西走廊,西部止于金塔-鼎新断裂,向东尖灭于银川 以西。

龙首山岩群(原称龙首山群)(甘肃省地质局第 一区测队,1968)⁹主要分布在河西走廊北侧,以 NWW-SEE向展布,西起金塔县境内,向东南经高台 县合黎山、张掖东大山,到金昌市龙首山一带,断续 延伸约400km(图1b)。龙首山岩群在龙首山地区 主要分布在玉石沟—塔马沟—哈哈泉、东大山、滑石 口井等地,为本区最古老的中深变质基底岩系。但 经野外地质调查发现,龙首山东段滑石口井地区原 被划定为龙首山岩群的岩石多为变质很浅的变沉积 岩,岩石类型及变质程度与金昌附近的龙首山岩群 显著不同;另外LA-ICP-MS 锆石 U-Pb 测年结果也 显示滑石口井地区与前者完全不同的碎屑锆石年龄 特征,而与龙首山南部寒武系大黄山群类似(未发表 数据)。因此,这可能意味着原定的龙首山岩群需要 解体和重新划分(图1c,另文发表)。

本文研究主要集中在金昌市附近的龙首山岩 群。研究区的龙首山岩群主要分为上下两个岩组 (图2):下部为白家咀子组,系一套经历高角闪岩相 变质作用并伴随部分重熔的变质岩石,主要岩性为

混合岩、白云质大理岩、混合岩化黑云母片麻岩夹斜 长角闪岩等;上部为塔马子沟组,主要为二云母石英 片岩、黑云母石英片麻岩夹含石墨大理岩等。

龙首山岩群的上覆地层为墩子沟群和韩母山 群,与龙首山岩群为角度不整合接触,主要由浅变质 的碳酸盐岩和碎屑沉积岩组成。墩子沟群主要岩性 有硅质条带白云岩及变石英岩、石英砂岩、砾岩等。 根据地层对比,一些学者将墩子沟群定为蓟县系(张 新虎,1992;许安东等,2003)。前人曾测得该群全岩 Rb-Sr 等时线年龄为 1 261 ± 21 Ma(李文渊,1991), 认为墩子沟群时代为中元古代。

韩母山群覆于墩子沟群之上,其显著特征是发 育一套相当于扬子板块南沱期的冰碛岩,且广泛发 育含磷岩石,岩性主要为白云质灰岩及绢云千枚岩、 石英砂岩、砾岩。李文渊(1991)认为其是寒武纪的 沉积岩;但大多学者同意属震旦系,且有含磷石英砂 岩的 Rb-Sr 年龄 593±39 Ma 和变基性火山岩 Rb-Sr 年龄 504 Ma 佐证(张新虎,1992;葛肖虹等,1999), 因此韩母山群的时代被认为属于新元古代。

2 样品描述及岩相学特征

本文所采集样品分布在金昌南部和西北部的不 同剖面(图1c和图2)。在用于U-Pb定年的6个样 品中,4个样品来自龙首山岩群,2个样品来自墩子 沟群底部与上覆龙首山岩群不整合接触带的变沉积

图 2 龙首山野外剖面图、地层柱状图及采样位置

Fig. 2 Geological section , stratigraphic histogram and sampling locations in Longshoushan area

岩。样品采集严格保证样品新鲜、具有代表性,并可 挑选出足够用于测试的锆石。

样品 LS10-1-5.1 为含石榴石云母石英片岩,采

样点坐标 N38°29.323′,E102°5.827′,位于剖面 Ⅱ中 龙首山岩群上部塔马子沟组(图2),出露宽度约为 15 m,其上下均为薄层状大理岩。倾角近直立,走向

798

160°~172°,倾向 SW,有后期伟晶岩脉侵入。野外露头上岩石显示出具明显的片状构造,显微镜下岩石具鳞片状、粒状变晶结构,主要矿物为石英(70%)、斜长石(15%)、黑云母(10%)和石榴石(3%),含有少量白云母及微量的锆石等副矿物(图 3a),推测其原岩为含泥质砂岩。

样品 LS10-10-2.1 为混合岩化花岗质片麻岩, 采样点坐标 N38°28.180′,E102°9.985′,位于剖面Ⅲ 龙首山岩群下部白家咀子组(图 2)金川矿二采区附 近,围岩为大理岩。野外露头显示岩石具有浅色条 带和暗色条带相间分布的条带状构造,浅色条带宽 20 cm~2 m 不等,岩石具有明显糜棱岩化。手标本 局部具有暗色矿物组成的集合体。显微镜下浅色体显示出粒状变晶结构,主要矿物为石英(50%)、斜长石(30%)和少量角闪石(5%)、石榴石(5%)、黑云母(<5%)、方解石(3%)及微量金红石等。长石大都发生绢云母化(图 3b)。

样品 LS10-9-7.1 为斜长角闪岩,采样点坐标 N38°28.785′,E102°9.699′,位于剖面Ⅲ龙首山岩群 下部白家咀子组中金川矿三采区附近,围岩为大理 岩(图 2),野外出露宽度约为 5 m。显微镜下显示出 粒状变晶结构,矿物组成相对简单,主要由角闪石 (60%)、斜长石(30%)组成,含有少量黑云母、石英 及微量的榍石和锆石等副矿物(图3c),推测原岩为

图 3 样品的显微结构(正交偏光)特征(矿物英文缩写引自 Whitney 和 Evans, 2010)

Fig. 3 Microphotographs showing microtextures of six samples (crossed nicols) (mineral abbreviations after Whitney and

Evans, 2010)

a—LS10-1-5.1: 云母石英片岩: 鳞片、粒状变晶结构, 主要矿物组合 Qtz + Bt + Grt: b—LS10-10-2.1: 混合岩化花岗质片麻岩: 粒状变晶结构, 主要矿物组合 Qtz + Fsp + Grt: c—LS10-9-7.1: 斜长角闪岩: 粒状变晶结构, 主要矿物组合 Hbl + Pl: d—LS10-1-10.1: 混合岩化片麻岩: 粒状变晶结构, 主要矿物组合 Qtz + Pl + Kfs + Mi; e—LS10-3-2.1: 二云母石英片岩: 鳞片变晶结构, 主要矿物组合 Qtz + Bt + Ms: f—LS10-6-5.1: 二云母石英片岩: 鳞片变晶结构, 主要矿物组合 Qtz + Ms + Bt

基性火山岩。

样品 LS10-1-10.1 为花岗片麻岩,采样点坐标 N38°29.209′ E102°7.684′,位于剖面 II 龙首山岩群 下部白家咀子组(图2),走向 100°,倾向 SW,野外露 头上显示岩石具有肉红色花岗质条带,具片麻状构 造。显微镜下岩石为粒状变晶结构,主要矿物为长 石(钾长石:斜长石=1:1.5)(50%),石英(30%)和 少量黑云母(10%),白云母(5%),绿泥石(5%)等及 微量的榍石、磷灰石和锆石等副矿物(图 3d)。云母 等矿物定向分布构成片麻理。

样品 LS10-3-2.1 为二云母石英片岩,采样点坐标 N38°33.005′,E102°1.031′,位于墩子沟群底部, 在变质砂砾岩中呈夹层(图2)。片状构造,走向 175°,倾角近直立。显微镜下显示岩石具鳞片变晶 结构,主要矿物为石英(60%)、云母(25%)、长石 (10%)和角闪石(3%)及少量次生矿物如绿泥石等 (图3e)。推测其原岩为含泥质砂岩、粉砂岩。

样品 LS10-6-5.1 为二云母石英片岩,采样点坐标 N38°30.619′,E102°3.055′,位于墩子沟群底部(图2)围岩为结晶灰岩、石英岩和砾岩。走向145°,倾向 SW 具有明显拉伸线理。显微镜下显示具鳞片变晶结构,主要矿物为石英(65%)云母(25%)及少量长石(5%)方解石(2%)等(图3f)。云母定向排列构成片理。推测其原岩为含泥质砂岩、粉砂岩。

3 锆石 U-Pb 定年

3.1 分析方法

锆石的分选工作由河北省廊坊区域地质调查所 研究室完成。选取均一、新鲜、无脉体穿插的样品, 破碎到适当大小(一般为 80~100 目)、淘洗,然后经 人工重砂、电磁分选等多种方法分离锆石,并在双目 镜下手工挑选。随机挑选锆石 80~100 粒粘到双面 胶上,加注环氧树脂进行制靶,待固化后,将靶内锆 石打磨至原尺寸一半大小,抛光之后在光学显微镜 下拍摄锆石反射光和透射光照片。相关制靶流程及 注意事项见文献(宋彪等 2002)。

锆石 U-Pb 测年由天津地质矿产研究所测试中 心完成。所用仪器为 Neptune 多接收电感耦合等离 子体质谱仪和 193 nm 激光取样系统(LA-MC-ICP-MS)。Neptune 为 Thermo Fisher 公司制造,离子的 光学通路采用能量聚焦和质量聚焦的双聚焦设计, 并采用动态变焦(zoom)将质量色散扩大至 17%。 仪器配有 9 个法拉第杯接收器和 4 个离子计数器接 收器 除了中心杯和离子计数器外,其余 8 个法拉第 杯配置在中心杯的两侧,并以马达驱动进行精确的 位置调节 *A* 个离子计数器捆绑在 L4 法拉第杯上。 激光器为美国 ESI 公司生产 ArF 准分子激光器,激 光波长 193 nm,脉冲宽度 5 ns,束斑大小 2~150 μm 可调,脉冲频率 1~200 Hz 连续可调。

实验根据锆石阴极发光照片、反射光和透射光 照片选择锆石的合适区域,利用 193 nm FX 激光器 对锆石进行剥蚀,激光剥蚀的斑束一般为 35 或 50 µm,能量密度为 13~14 J/cm²,频率为 8~10 Hz,激 光剥蚀物质以 He 为载气送入 Neptune,利用动态变 焦扩大色散使质量数相差很大的 U-Pb 同位素可以 同时接收,从而进行 U-Pb 同位素测定。锆石标样采 用 TEMORA 标准锆石(Black *et al.*, 2003),数据处 理采用中国地质大学刘勇胜老师编写的 ICPMS DataCal 程序和 Ludwig 1999)的 ISPLOT 程序进行分 析和 作图、采用²⁰⁸ Pb 对普通铅进行校正,利用 NIST612 作为外标,计算锆石样品的 Pb, U、Th 含量。

3.2 锆石 U-Pb 测年结果

6 个样品 LA-ICP-MS 锆石 U-Pb 同位素测试结 果原始数据见表 1。

3.2.1 LS10-1-5.1

云母石英片岩中的锆石晶型完整,呈自形柱状、 次圆状,长轴约200~350 µm,长宽比约1.5:1~4: 1。阴极发光(CL)图像显示锆石主要分为两种类型: 一类锆石具有典型的核边结构,核部有明显或不太 明显的振荡环带,边部具有窄的、呈亮白色或暗灰色 的边(如图4a,测点25、33),为岩浆来源锆石;另一 类锆石缺乏内部结构,呈暗色的弱发光特征(如图 4a,测点4),也具有极窄的、亮白色的边。

此样品共测定了 60 个点(表 1)。第 38 号测点 ²⁰⁷Pb/²⁰⁶Pb 年龄得到 2 598 ± 32 Ma 的晚太古代年 龄,但明显不在谐和线上,故不予讨论;12 个锆石边 的 Th/U 比介于 0.004~0.11,大部分数据不谐和, 具有明显 Pb 丢失特征,其中 1 个近谐和的数据点的 ²⁰⁷Pb/²⁰⁶Pb 年龄为 1 887 ± 4 Ma,解释为变质作用时 代。

具岩浆锆石特征的锆石核部数据可分为两个年 龄群(图 5a)。较小的年龄群中 ,33 个数据点的 Th/ U比介于 0.12~0.53,部分数据点明显在谐和线下 方 显示 Pb 丢失特征。33 个数据拟合的不一致线 的上交点年龄为 2 034 ± 7 Ma(MSWD=1.17),其中

测年结
同位素
u-Pb
S锆石
LA-ICP-M
6 个样品
龙首山地区。
表1

果

				l'able I	LA-ICP-MS	ZIrcon U-P01	sotope data	or six samples	III Longsno	ushan area					1
口 中 斎	$w_{ m B}'$	10-6	11/ 11			同位素	比值					年龄/Ma			
拠尺ち -	Pb	n	n/ur	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁷ Pb/ ²⁰⁶ Pb	10
LS10-1-5.1						Ŋ	51								Ĩ
1	84	222	0.38	0.3508	0.0071	6.1472	0.1242	0.1271	0.0016	1 938	39	1 997	40	2 058	22
2	273	629	0.26	0.3936	0.0045	7.3599	0.0836	0.1356	0.0007	2139	24	2 156	24	2 172	6
3	175	473	0.28	0.3548	0.0048	6.11	0.083	0.124.9	0.0007	1 957	26	1 992	27	2028	10
4	116	273	0.37	0.3928	0.0048	7.300.9	$\bigcirc 0.0919$	0.1348	0.0007	2 136	26	2 149	27	2 162	10
5	335	1 125	0.26	0.2864	0.0029	4.8099	0.0464	0.1218	0.0006	1 624	17	1 787	17	1983	9
9	197	512	0.53	0.3456	0.0036	5.8904	0.0627	0.1236	0.0003	$1 \ 914$	20	1960	21	$2\ 009$	4
7	186	594	0.05	0.3173	0.0031	5.2975	0.0516	0.1211	0.0005	1777	17	1868	18	1 972	8
8	80	198	0.37	0.3765	0.0028	6.6526	0.034	0.1282	0.0005	2060	15	2 066	11	2 073	7
6	134	360	0.27	0.3561	0.0046	6.1018	0.084	0.1243	0.0006	1964	26	1991	27	2 018	8
10	310	1350	0.21	0.2233	0.0021	3.6111	0.0329	0.1173	0.0005	1299	12	1552	14	1 915	7
11	238	595	0.34	0.3761	0.0025	6.5388	0.0746	0.1261	0.0006	2058	14	2 051	23	2044	9
12	46	115	0.29	0.3779	0.0024	6.6227	0.0555	0.1271	0.0007	2066	13	2062	17	2058	6
13	92	232	0.36	0.3722	0.0023	6.4202	0.0684	0.1251	0.0006	2040	13	2 035	22	2030	8
14	54	135	0.37	0.3741	0.0036	6.4807	0.0648	0.1256	0.0004	2049	20	2 043	20	2038	5
15	164	439	0.29	0.3542	0.0034	6.138	0.0585	0.1257	0.0005	1954	19	1,996	19	2 039	7
16	274	1267	0.2	0.2114	0.0035	3.3907	0.0823	0.1163	0.0021	$1\ 236$	21	1502	36	1901	32
17	92	264	0.26	0.3337	0.0024	5.7575	0.0448	0.1251	0.0004	1856	13	1 940	15	2 030	9
18	193	470	0.49	0.3682	0.0019	6.8618	0.0582	0.1352	0.000 6	2021	10	2094	18	2166	8
19	72	198	0.36	0.3326	0.0028	5.985	0.0552	0.1305	0.000.5	1851	16	1 974	18	2 105	7
20	92	254	0.12	0.3604	0.0069	6.116	0.1265	0.1231	0.001	1 984	38	1 993	41	2002	14
21	223	772	0.15	0.2811	0.0039	4.8655	0.0563	0.1255	0.000 8	1 597	22	1796	21	2036	11
22	133	362	0.35	0.3417	0.0033	6.0703	0.0569	0.1288	0.0007	1895	19	1986	19	2082	9
23	295	1062	0.2	0.2701	0.0033	4.5239	0.0636	0.1215	0.0008	1 541	19	1 735	24	$1 \ 978$	12
24	104	245	0.57	0.3757	0.0046	7.0896	0.0851	0.1369	0.0007	2 056	25	2 123	25	2188	8
25	104	304	0.11	0.3389	0.0021	5.6641	0.0416	0.1212	0.0005	1881	12	$1 \ 926$	14	1974	7
26	50	130	0.21	0.3736	0.0059	6.3872	0.106	0.124	0.0006	2.046	32	2 031	34	2015	6
27	147	380	0.34	0.3696	0.0028	6.3025	0.0471	0.1237	0.0004	2 028	15	$2\ 019$	15	$2\ 010$	5
28	47	116	0.45	0.3725	0.003	6.3292	0.052	0.1232	0.0001	2041	17	2023	17	2004	1

미 년 동	$w_{\rm B}$	10^{-6}	T1 / IT			同位素	比值					年龄/N	ធ		
년 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\mathbf{Pb}	n		²⁰⁶ Pb/ ²³⁸ U	lσ	207 pb/235 U	10	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ
510-1-5.1							RT.								
29	34	78	0.59	0.3903	0.0039	7.1636	0.0473	0.1331	0.0006	2 124	21	2 132	14	2 139	9
30	102	239	0.42	0.3937	0.0046	7.2335	0.0836	0.1333	0.0006	2140	25	2 141	25	2 141	œ
31	27	72	0.24	0.3664	0.0042	6.2619	0.0746	0.124	0.0004	2 012	23	2013	24	2014	9
32	45	115	0.31	0.3685	0.0037	6.3018	0.0625	0.124	0.0005	2 023	20	2019	20	2 015	8
33	4	13	0	0.3519	0.0036	5.7036	0.1992	0.1175	0.0039	1 944	20	1932	67	$1 \ 919$	60
34	29	67	0.51	0.3885	0.0015	7.1329	0.0782	0.1332	0.0012	$2\ 116$	8	2 128	23	2 140	16
35	129	581	0.02	0.2286	0.0009	3.4426	0.0303	ightarrow 0.1092	0.0006	$1 \ 327$	5	1514	13	1 787	9
36	39	66	0.3	0.3742	0.0036	6.5259	0.063.5	0.1265	0.0005	2049	20	2049	20	2050	7
37	104	267	0.3	0.3687	0.0031	6.3897	0.0516	0.1257	0.0004	2023	17	2 031	16	2039	S
38	16	30	0.42	0.4161	0.0045	9.9923	0.2216	0.174 2	0.0033	2 243	24	2 434	54	2 598	32
39	78	206	0.23	0.3664	0.0043	6.2887	0.0842	0.1245	0.0008	2 013	23	2 017	27	2021	12
40	100	317	0.06	0.3211	0.0029	5.1123	0.036	0.1155	0.0003	1 795	16	1838	13	1 887	4
41	177	269	0.03	0.2595	0.002	4.0579	0.0272	0.1134	0.0005	1487	11	1646	11	1 855	7
42	104	280	0.19	0.3613	0.0036	6.2221	0.0635	0.1249	0.0002	1 988	20	2008	20	2 027	3
43	302	1388	0.02	0.2252	0.0016	3.4036	0.0254	0.109.6	0.0002	1309	10	1505	11	1 793	С
44	51	127	0.48	0.3539	0.0033	6.5201	0.0463	0.1336	0.0007	1 953	18	2049	15	2.146	10
45	115	379	0.01	0.3096	0.0023	5.0781	0.04	0.419	0.0004	1739	13	1832	14	1941	5
46	245	642	0.32	0.3582	0.0017	6.1293	0.0579	0.1241	0.0006	1 974	6	1 994	19	2016	6
47	280	788	0.23	0.3416	0.0025	5.8061	0.0494	0.1233	0.0003	1894	14	1 947	17	2004	5
48	226	738	0.06	0.3084	0.0035	5.1854	0.0627	0.1219	0.000 6	1 733	19	1850	22	1,985	8
49	353	1283	0.02	0.2789	0.0021	4.6869	0.0461	0.1219	0.0004	1.586	12	1 765	17	1,984	ŝ
50	150	448	0.08	0.335	0.0034	5.7694	0.0562	0.1249	0.000	1862	19	1942	19	2028	9
51	92	211	0.45	0.3955	0.0027	7.3832	0.0828	0.1354	0.000 8	2.148	14	2 159	24	2169	10
52	87	246	0.29	0.3333	0.0019	5.717	0.0388	0.1244	0.0004	1854	11	1 934	13	2020	9
53	74	196	0.28	0.359.9	0.0029	6.2158	0.0785	0.1252	0.0009	1982	16	2 007	25	2032	12
54	56	151	0.22	0.3565	0.0024	6.0474	0.0707	0.123	0.000.6	1 966	13	1983	23	2 001	6
55	253	816	0.18	0.3041	0.0029	5.0659	0.0631	0.1208	0.001	9711	16	1830	23	1969	14
56	100	218	0.77	0.388	0.0047	7.1252	0.0904	0.1332	0.0004	2.114	25	2 127	27	2 140	5
57	122	380	0.04	0.3242	0.0032	5.3489	0.0548	0.1197	0.0003	1810	18	1877	19	1 951	4
58	25	65	0.51	0.3508	0.0025	6.0383	0.0494	0.1249	0.001	1 938	14	1981	16	2 027	14
59	111	288	0.25	0.3713	0.0035	6.4064	0.05	0.1251	0.0005	2 036	19	2 033	16	2 031	7
60	18/	110	0 66	0 000 0	0 000 0				1 000 0	0000					

第30卷

	1σ		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	24	21	25	21	21	21	21	21	21
	²⁰⁷ Pb/ ²⁰⁶ Pb		$1 \ 928$	1881	$2 \ 039$	1 945	1926	1949	1932	$1 \ 928$	1968	$1 \ 936$	1898	1 935	1944	2 063	1927	1988	2042	2 063	1 959	1 937	2021	1894	2061	1954	1960	1 975	2 094	2 085	2.086
	1σ		26	24	31	27	28	27	27	26	30	26	26	26	26	30	29	31	36	41	30	27	33	24	35	27	28	28	33	28	29
年龄/Ma	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$		1 955	1809	2089	1949	1953	2 031	1986	1965	2050	1980	1904	1 974	1 959	2 058	1962	1 991	2040	2119	1 976	1,998	2 023	1802	2 111	2012	$2\ 009$	1990	2 121	$2\ 113$	2 144
	1σ		12	10	18	13	14	П	12	12	16	10	13	12	11	17	17	20	25	30	17	12	15	10	20	13	15	12	21	12	13
	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		1982	1 748	2141	1952	$1 \ 978$	2 112	2039	$2\ 000$	2 131	2 022	1910	2011	1973	2 053	1 996	1 994	2 039	2 178	1994	2058	2 025	1 724	2 162	2 069	2 057	2 004	2149	2 141	2 206
Ì	1σ		0.0014	0.0014	0.0015	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0015	0.0014	0.0014	0,0015	0.0015	0.0014	0.0014	0.0017	0,0014	0.0018	0.0014	0.0014	0.0014	0.0015	0.0015	0.0015
	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$		0.1181	0.115	0.1257	0.1193	0.118	0.1195	0.1184	0.1181	0.1208	0.1187	0.1162	0.1186	0.1192	0.1274	0.118	0.1222	0.1259	0.1275	0.1202	0.1187	0.1244	0.1159	0.1273	0.1199	0.1202	0.1212	0.1297	0.129	0.1291
比值	10	257	0.0788	0.0658	0-1	0.0804	0.0823	0.0849	0.0819	0.0795	0.0945	0.0789	0.0756	0.08	0.0785	0.0964	0.0866	0.0952	0.1133	0.1351	0.0904	0.0824	0.1047	0.066	0.1169	0.085	0.088	0.0848	0.1102	0.0936	0.0982
同位素	²⁰⁷ Pb/235U		5.8599	4.9418	6.8281	5.8159	5.8431	6.3897	6.0732	5.9222	6.5267	6.0283	5.5228	5.9842	5.8845	6.5876	5.9056	6.1053	6.4585	7.0622	6.0039	6.1551	6.3306	4.8993	6.9935	6.2548	6.2311	6.0959	7.0773	7.0094	7.264
	1σ		0.0022	0.0018	0.0034	0.0023	0.0026	0.0021	0.0023	0.0022	0.003	0.0019	0.0023	0.0021	0.002	0.0031	0.003	0.0036	0.0046	0.0055	0.0032	0.0021	0.0027	0.0018	0.0037	0.0024	0.0027	0.0023	0.0039	0.0022	0.0025
	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		0.359.9	0.3115	0.3939	0.3537	0.3591	0.3877	0.372	0.3637	0.3918	0.3685	0.3449	0.3662	0.3581	0.375	0.363	0.3625	0.3721	0.4019	0.3624	0.376	0.369	0.3067	0.3985	0.3784	0.3758	0.3646	0.3957	0.393.9	0.408
Th/11	O MT		0	0.09	0.51	0.1	0.01	0.07	0.01	0.01	0.08	0	0.02	0.01	0.03	0.83	0.01	0.12	0.59	0.49	0.08	0.01	0.25	0.03	0.53	0.02	0.02	0.14	0.73	0.61	0.66
10 ⁻⁶	U		1730	2414	1 823	1 559	1 470	811	1 716	1828	1947	2 215	1619	1646	1 083	$1 \ 007$	$1\ 290$	1 755	486	545	1453	746	306	$1 \ 092$	139	1866	1230	1503	1 071	759	809
$w_{\rm B}/$	\mathbf{Pb}	_	604	732	802	548	513	310	620	646	759	792	543	586	379	445	455	640	200	240	522	272	119	328	62	688	451	552	499	340	382
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	C	LS10-1-10.	1	5	ß	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29

	TT / TT			同位素	比值					年龄/Ma	_		
	— IIV N	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁶ Pb/ ²³⁸ U	10	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁷ Pb/ ²⁰⁶ Pb	10
					5								
214	0.01	0.3677	0.0019	6.0671	0.0799	0.1197	0.0014	2018	10	1,986	26	1951	21
516	0.41	0.3885	0.0025	6.7493	0.0925	0.126	0.0015	2 116	14	2079	28	2043	21
. 812	0.02	0.3427	0.0024	5.5029 6	0.0773	0.1165	0.0014	1 900	13	$1 \ 901$	27	1903	21
591	0.01	0.3697	0.0039	6.1022 <	0.0978	0.1197	0.0014	2028	21	1991	32	1 952	21
1 688	0.6	0.4025	0.0056	7.0481	0.1333	0.127	0.0015	2 181	30	2118	40	2 057	21
2 070	0.01	0.3823	0.0029	6.2929	0.09	$^{}_{\Lambda}$ 0.1194	0.0014	2087	16	2017	29	1,947	21
947	0.01	0.3925	0.0033	6.4298	0.0951	0.1188	0.0014	2 134	18	2,036	30	1 938	21
1323	0.29	0.3871	0.0022	6.4935	0.0864	0.1217	0.0014	2109	12	2 045	27	1981	21
1 655	0.02	0.3624	0.0024	5.851	0.080 5	0,1171	0.0014	1 993	13	1 954	27	1 913	21
805	0.48	0.3418	0.0024	5.6063	0.0794	0,119	0.0014	1 895	13	$1 \ 917$	27	1941	21
474	0.38	0.3636	0.0035	6.1765	0.089 7	0.1232	0.0015	1 999	19	2 001	29	2 004	22
1450	0.17	0.3799	0.002	6.289	0.0824	0.1201	0.0014	2 076	11	2017	26	1957	21
1220	0.05	0.3255	0.0026	5.2618	0.0752	0.1173	0.0014	1816	14	1863	27	1 915	21
244	0.55	0.3812	0.0029	6.6422	0.0979	0.1264	0.0016	2082	16	2 065	30	2048	22
1084	0.03	0.3855	0.0027	6.3471	0.0892	0.1194	0.0014	2102	15	2 025	28	1 947	21
1 318	0.05	0.3343	0.0053	5.42	0.1069	0.1176	0.0014	1859	29	1888	37	1919	21
2 122	0.07	0.3664	0.0026	6.0968	0.0872	0.1207	0.0014	2012	15	1 990	28	1966	21
1429	0.21	0.3658	0.0071	6.2755	0.1443	0.1244	0.0015	$2\ 010$	39	2015	46	2020	21
1538	0.47	0.3964	0.002	6.8519	0.0897	0.1254	0.0015	2 152	11	2 092	27	2034	21
931	0.02	0.3712	0.0024	6.0767	0.0839	0.1187	0.0014	2 035	13	1 987	27	1 937	21
2 325	0.59	0.3843	0.0018	6.8149	0.0882	0.1286	0.0015	2 097	10	2088	27	2 079	21
171	0.25	0.3798	0.0025	6.5911	0.102	0.1259	0.0018	2 075	14	2 058	32	2041	25
222	0.29	0.3579	0.0023	6.1336	0.0942	0.1243	0.0017	1972	13	1 995	31	2019	25
254	0.31	0.3207	0.0026	5.4648	0.0937	0.1235	0.0018	1 793	14	1895	33	2008	25
157	0.32	0.3453	0.0022	6.0032	0.0935	0.1261	0.0018	J912	12	1 976	31	2044	25
202	0.23	0.3043	0.0022	5.0493	0.081	0.1203	0.0017	1713	12	1828	29	1961	26
117	0.79	0.3552	0.0019	6.3118	0.1036	0.1289	0.002	1 959	11	2020	33	2083	28
539	0.01	0.229.9	0.0019	3.6173	0.0637	0.1141	0.0016	1334	11	1553	27	1865	26
150	0.38	0.3529	0.0023	6.0735	0.0969	0.1248	0.0018	1 948	13	1,986	32	2026	26
193	0.25	0.38	0.0026	6.5187	0.1015	0.1244	0.0018	2076	14	2 048	32	2 021	25

第5期

/10 - e					同位素	比值					年龄/M	_0		
D2	¹ B/ 10 ⁻	– Th/11			HHAT W	tu TE					HI NI	B B		Ĩ
\mathbf{Pb}	U		$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	10	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ
					N	25								
74	191	0.27	0.3733	0.0038	6.378.5	0.1136	0.1239	0.0018	2 045	21	$2\ 029$	36	2013	25
46	117	0.3	0.3769	0.0028	6.4707	0.108	0.1245	0.0019	2062	15	2 042	34	2022	26
92	240	0.23	0.3762	0.0027	6.4145	0.1	0.1237	0.0017	2058	15	2034	32	$2\ 010$	25
83	210	0.34	0.3748	0.0023	6.598	0.1005	0.1277	0.0018	2 052	13	2 059	31	2066	25
101	270	0.33	0.3581	0.002	6.1121	0.0909	0.1238	0.0017	1 973	11	1992	30	$2\ 012$	25
115	364	0.08	0.3188	0.0023	5.2604	0.0836	0.1197	0.0017	1784	13	1862	30	1 951	25
90	266	0.26	0.3284	0.003	5.4944	0.0987	0.1213	0.0017	1831	17	1900	34	1 975	26
62	212	0.18	0.2894	0.0075	4.7898	0.1507	0.1198	0.0018	1639	42	1 783	56	1954	26
76	205	0.3	0.3531	0.002	6.0434	0.090.7	0.1241	0.0018	1949	11	1 982	30	$2\ 017$	25
140	337	0.53	0.3813	0.0036	6.4963	0.1076	0.1236	0.0017	2082	20	2 045	34	2008	25
112	314	0.33	0.34	0.0025	5.7143	0.088	0.1219	0.0017	1887	14	1 934	30	1984	25
131	356	0.23	0.3561	0.0023	6.0784	0.0914	0.1238	0.0017	1964	13	1 987	30	2011	25
83	234	0.28	0.3411	0.0025	5.7232	0.0877	0.1217	0.0017	1892	14	1 935	30	1 981	25
63	191	0.37	0.3072	0.0037	5.2083	0.0948	0.122.9	0.0018	1 727	21	1854	34	1 999	25
46	124	0.28	0.3555	0.0027	6.1374	0.1004	0.1252	0.0018	1961	15	1 996	33	2 031	26
80	207	0.32	0.363.9	0.002	6.5371	0.0974	0.1302	0.0018	2 001	11	2 051	31	$2 \ 101$	25
59	152	0.37	0.3616	0.0023	6.1686	0.0956	0.1237	0.0018	1 990	13	$2\ 000$	31	$2\ 010$	26
75	221	0.2	0.3313	0.0059	5.4913	0.1307	0.12	0.0017	1845	33	1899	45	1957	25
111	334	0.06	0.3365	0.0024	5.6135	0.0883	0.1209	0.0017	1870	13	$1 \ 918$	30	$1 \ 970$	25
129	340	0.3	0.3634	0.0037	6.1079	0.1055	0.1218	0.0017	1 998	20	1991	34	1983	25
119	293	0.43	0.3793	0.0041	6.4717	0.1118	0.1237	0.0017	2 073	22	2 042	35	2 011	25
99	188	0.32	0.3321	0.0028	5.661	0.092	0.1237	0.0018	1848	15	1925	31	$2\ 010$	26
124	429	0.77	0.2542	0.0014	4.1088	0.0613	0.1172	0.0016	1460	8	1656	25	$1 \ 914$	25
57	161	0.45	0.3281	0.0018	5.5582	0.0849	0.1229	0.0018	1829	10	$1 \ 910$	29	1 999	25
116	307	0.12	0.375	0.0041	6.5737	0.1144	0.1272	0.0018	2 053	23	2 056	36	2060	25
43	26	0.76	0.3835	0.0038	6.8442	0.1198	0.1295	0.0019	2 093	21	2 091	37	2 091	26
65	168	0.33	0.369	0.0038	6.4124	0.1138	0.126	0.0018	2 025	21	2034	36	2 043	25
104	271	0.49	0.356	0.0038	6.1938	0.1123	0.1262	0.0018	1.963	21	2 004	36	2 045	25
103	274	0.35	0.3582	0.0034	6.1759	0.1019	0.1251	0.0017	1 974	19	2 001	33	2 030	25
103	290	0.33	0.3414	0.0064	5.8197	0.1413	0.1236	0.0017	1893	36	1 949	47	2008	25
92	277	0.18	0.3292	0.0047	5.6081	0.1169	0.1235	0.0017	1 835	26	1 917	40	2 007	25

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.1212 0.0019 0.1244 0.0017 0.1335 0.0019 0.119 0.0017 0.1259 0.0018 0.122 0.0017 0.1276 0.0019
0.1244 0.1335 0.119 0.119 0.1259 0.1276 0.1276
0.1181 0.0666 0.0939 0.0734 0.0734 0.0631
4. 424 0.0 6. 048 9 0.0 4. 748 2 0.0 6. 085 9 0.0 4. 363 9 0.0
$\begin{array}{rrrr} 0.3484 & 0.0024 \\ 0.2822 & 0.0019 \\ 0.346 & 0.0027 \\ 0.2596 & 0.0013 \end{array}$
0.36 0.22

806

Th/11	同位素比值
²⁰⁷ I ²⁰⁶ Pb/ ²³⁸ U 1σ ²⁰⁷ I	$b/^{235}U$ 1σ $^{207}Pb/^{206}Pb$ 1σ $^{206}Pb/^{238}U$
0.36 0.3973 0.0018 6	.9392 0.0476 0.1267 0.0006 2157
0.3 0.4024 0.0021 (5.9624 0.050 6 0.125 5 0.000 6 2 180
0.42 0.409 9 0.002 5	7.1198 0.0588 0.126 0.0006 2.214
0.34 0.4079 0.0029	7.0785 0.0633 0.1259 0.0006 2.205
0.44 0.4076 0.0032	7.1077 0.0564 0.1265 0.0006 2.204
0.62 0.4024 0.0019	7.1598 0.0616 0.129 0.0009 2.180
0.24 0.4143 0.0022	$7.3349 \qquad 0.1072 \qquad 0.1284 \qquad 0.0007 \qquad 2234$
0.44 0.386 5 0.004 5	6.6263 0.0492 0.1243 0.0006 2107
0.49 $0.372.3$ $0.002.1$	6.604 7 0.046 8 0.128 7 0.000 8 2 040
0.28 0.3592 0.0015	6.1062 0.0467 0.1233 0.0006 1.979
0.45 $0.394.8$ $0.001.9$	6.931 0.0541 0.1273 0.0007 2145
0.3 0.3083 0.0019	5.2377 0.0367 0.123 2 0.000 6 1 732
0.32 0.392.5 0.002	6.745 0.0524 0.1246 0.0007 2134
0.32 0.4057 0.0025	7.248 0.0564 0.1296 0.0006 2.195
0.39 0.344.3 0.002.2	5.872 3 0.042 9 0.123 7 0.000 6 1 907
0.45 0.3765 0.0018	$6.466 \qquad 0.0374 \qquad 0.1246 \qquad 0.0006 \qquad 2060$
0.43 0.3915 0.0017	6.9772 0.0397 0.1293 0.0006 2130
0.32 0.3554 0.0014	6.1057 0.0402 0.1246 0.0006 1960
0.34 0.3879 0.0021	6.7324 0.0358 0.1259 0.0005 2113
0.19 0.4069 0.0026	7.0978 0.0473 0.1265 0.0006 2.201
0.38 0.2071 0.0011	3.6277 0.0203 0.127 0.0006 1.214
0.23 0.207 0.001	A 110 N 0.000 6 1 213
0.31 0.3778 0.0021	3.3948 0.0234 0.117
0.42 0.3851 0.0019	3.3948 0.0234 0.117 0.000 6 2 066 6.4961 0.0407 0.1247 0.0006 2 066
0.15 0.2094 0.0013	3.3948 0.0234 U.ILy 0.0006 2066 6.4961 0.0407 0.1247 0.0006 2066 6.7159 0.0494 0.1265 0.0006 2100
0.72 0.405 5 0.002	3.3948 0.0234 0.112 0.000 2 066 6.4961 0.0407 0.1247 0.000 2 066 6.7159 0.0494 0.1265 0.000 2 100 3.6277 0.0351 0.1256 0.001 1 226
0.51 0.350 3 0.002	3.3948 0.0234 U.117 U.0006 2 066 6.4961 0.0407 0.1247 0.0006 2 066 6.7159 0.0494 0.1265 0.0006 2 100 3.6277 0.0351 0.1256 0.001 1 226 7.3544 0.052 0.1315 0.0016 2 194
0.37 0.395 5 0.002 2	3.3948 0.0234 U.117 U.006 2066 6.4961 0.0407 0.1247 0.0006 2066 6.7159 0.0494 0.1265 0.0006 2100 3.6277 0.0351 0.1256 0.001 226 7.3544 0.052 0.1315 0.0006 2194 6.0901 0.0459 0.1261 0.0006 2194
0.22 0.3598 0.0018	3.3948 0.0234 0.117 0.0006 2066 6.4961 0.0407 0.1247 0.0006 2066 6.7159 0.0494 0.1265 0.0006 2100 3.6277 0.0351 0.1256 0.001 1226 7.3544 0.052 0.1315 0.0006 2194 6.0901 0.0459 0.1261 0.0006 2194 6.0901 0.0459 0.1261 0.0006 2194
0.96 0.3701 0.0019	3.3948 0.0234 0.112 0.012 6.4961 0.0407 0.1247 0.0006 2066 6.7159 0.0494 0.1265 0.0006 2100 3.6277 0.0351 0.1256 0.001 1226 7.3544 0.052 0.1315 0.0006 2194 6.0901 0.0459 0.1266 0.0006 2194 6.0951 0.0455 0.1266 0.0006 2148 6.274 0.0413 0.1265 0.0006 2148

⁷ Pb/235U 10		6mi /238r r		Th/11
Per la	207	ΤQ	$^{206}{\rm Pb}/^{238}{\rm U}$ 1 σ	206Pb/238U 10
5.1951 0.0467	S	0.0035	0.332.9 $0.003.5$	0.45 0.332 9 0.003 5
5.325.9 0.0391	S	0.0028	0.3369 0.0028	0.58 0.3369 0.0028
5.1949 0.0551	5	0.0029	0.3342 0.0029	0.36 0.334 2 0.002 9
5.250 5 0.043 9	S	0.0032	0.3339 0.0032	0.42 0.3339 0.0032
5.1388 0.0466	5	0.0028	0.326 0.0028	0.51 0.326 0.0028
5.1712 0.0459	S	0.0026	0.327 0.0026	0.53 0.327 0.0026
5.025 0.0594		0.0031	0.3233 0.0031	0.51 0.3233 0.0031
5.1218 0.0442	S	0.0025	0.3272 0.0025	0.43 0.3272 0.0025
5.1357 0.0503	Ś	0.0025	0.3294 0.0025	0.3 0.3294 0.0025
5.1667 0.049	Ś	0.0033	0.3308 0.0033	0.43 0.330 8 0.003 3
5.1498 0.0627	ŝ	0.0024	0.3301 0.0024	0.45 0.3301 0.0024
5.1783 0.0589	Ś	0.0038	0.3313 0.0038	0.44 0.3313 0.0038
5.1433 0.0433 ^V	S	0.0026	0.3289 0.0026	0.37 0.3289 0.0026
5.022 0.0404		0.0023	0.3255 0.0023	0.17 0.3255 0.0023
4.9024 0.0468	4	0.0022	0.3121 0.0022	0.53 0.3121 0.0022
5.2238 0.0766	ŝ	0.0025	0.3319 0.0025	0.45 0.3319 0.0025
5.0246 0.0492	ŝ	0.0028	0.326 0.0028	0.42 0.326 0.0028
5.246 0.0533		0.003	0.3341 0.003	0.42 0.3341 0.003
5.0852 0.0621	YO.	0.0025	0.3284 0.0025	0.42 0.3284 0.0025
5.163 0.0631		0.0028	0.325 0.0028	0.56 0.325 0.0028
5.0767 0.0457	vo.	0.0031	0.3232 0.0031	0.42 0.3232 0.0031
5.0546 0.072	ΥΩ.	0.0024	0.3252 0.0024	0.36 0.3252 0.0024
4.7586 0.0435	4	0.003	0.3053 0.003	0.44 0.3053 0.003
5.283 5 0.054 7	ŝ	0.0024	0.3343 0.0024	0.44 0.3343 0.0024
5.2616 0.0532	w)	0.0025	0.332 5 0.002 5	0.45 0.332 5 0.002 5
5.0477 0.0599	w)	0.0023	0.3282 0.0023	0.36 0.3282 0.002 3
5.0593 0.0566	w)	0.0028	0.326 $0.002.8$	0.47 0.326 0.0028
5.0306 0.0569	yr)	0.0029	0.319.9 $0.002.9$	0.46 $0.319.9$ $0.002.9$
4.9859 0.0599	4	0.0033	0.3174 0.0033	0.27 0.3174 0.0033
4.9982 0.0579	7	0.0033	0.3163 0.0033	0.46 0.3163 0.0033
5.111 0.05		0.0028	0.3271 0.0028	0.26 0.3271 0.0028
5.0346 0.0301	Y Y	0.003	0.3238 0.003	0.26 0.3238 0.003

第30卷

1-8	1-8
续表	Table .

第5期

²⁰⁶ Pb/ ²³⁸ U
0.3134 0.0
0.319 0.00
0.32 0.00
0.3297 0.00
0.3319 0.00
0.3299 0.002
0.3352 0.002
0.3328 0.003
0.3332 0.0024
0.3361 0.0036
0.331 0.002 3
0.3351 0.0024
0.334 0.0023
0.3301 0.0027
0.2917 0.0028
0.3358 0.0023
0.3352 0.0026
0.3356 0.0026
0.3392 0.0066
0.3319 0.0034
0.3309 0.0029
0.332.6 0.003
0.3283 0.0036
0.329 6 0.003
0.32860.0032
0.3237 0.002
0.3262 0.003
0.3244 0.003

第	5	期	

win/10 ⁻⁶ 目於書店 在較/Ma		1σ		18	14	8	6	4	8	S.	10	12	6	12	12	10	13	8	9	17	6	11	19	13	12	13	6	12
		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$		1 933	2003	2029	1 992	2082	$2 \ 030$	2003	2 151	$1 \ 921$	2108	2003	2081	2 085	1 984	2 002	$1 \ 914$	2 041	2 032	$1 \ 906$	2 058	2015	1 982	2 039	2 001	1 957
	年龄/Ma	1σ		28	25	18	14	20	17	21	20	24	26	26	27	21	31	22	19	30	25	19	33	23	21	22	27	19
		$^{207}\mathrm{Pb}/^{235}\mathrm{U}$		1 877	1,986	$2\ 018$	1 995	2 074	2039	1 995	2 143	1 915	2103	$2\ 000$	$2\ 101$	2 072	2 005	2004	1 913	2 025	2 035	1 909	2 027	2018	1984	2047	$2\ 021$	1 956
		1σ		30	17	15	22	19	14	20	20	21	20	15	16	17	28	21	18	23	25	20	36	24	21	26	26	23
		$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		1828	1969	$2\ 006$	1 997	2066	2 047	1 987	2136	1 909	2099	1 997	2 122	2058	2024	$2\ 006$	1 913	2010	2 038	$1 \ 912$	1 995	2 022	1 987	2 054	2 040	1954
	同位素比值 206pb/238U 1g 207pb/235U 1g 207pb/206pb 1g	1σ		0.0012	0.0009	0.0006	0.0007	0.0003	0.0006	0.0004	0.0008	0.0008	0.0007	0.0008	0.0009	0.0008	0.0009	0,000 6	0.0004	0.0012	0.000 6	0.0007	0.0014	0.0009	0.000.8	0.0009	0.0006	0.0008
		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$		0.1185	0.1232	0.125	0.1224	0.1288	0.1251	0.1232	0.134	0.1177	0.1307	0.123 2	0.1287	0.129	0.1219	0.1231	0.1172	0.1258	0.1252	0.1167	0.1271	0.124	0.1218	0.1257	0.1231	0.1201
		10	5	0.0812	0.0768	0.0546	0.0441	0.063.6	0.0529	0.0651	0.0669	0.0711	0.0871	0.08	0.0901	0.0669	0.0953	0.0678	0.0565	0.0948	0.0788	0.0553	0.1034	0.071	0.0638	0.0713	0.0841	0.0555
		$^{207}\mathrm{Pb}/^{235}\mathrm{U}$		5.3535	6.0686	6.2931	6.1317	6.7126	6.4473	6.1319	7.256	5.5897	6.9359	6.1706	6.918	6.6915	6.2017	6.1989	5.5823	6.3474	6.4211	5.5551	6.3585	6.2978	6.0597	6.5061	6.3174	5.8618
		10		0.0054	0.003	0.0027	0.0039	0.0035	0.0025	0.0037	0.0037	0.0039	0.0037	0.0028	0.003	0.0031	0.005	0.0038	0.0033	0.0041	0.0045	0.0036	0.0066	0.0043	0.0038	0.0048	0.0048	0.0041
		$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		0.3278	0.3573	0.3651	0.3632	0.3779	0.3738	0.3611	0.3928	0.3445	0.3848	0.3632	0.3897	0.3761	0.3689	0.3651	0.3454	0.3658	0.3719	0.3452	0.3628	0.3684	0.361	0.3753	0.3723	0.3541
	TL /11	Th/U		0.1	0.83	0.31	0.87	0.91	0.47	0.84	0.59	0.28	0.8	0.45	0.65	1.41	0.7	0.5	0.19	0.35	0.67	0.1	0.49	0.43	0.58	0.57	0.35	0.37
	10 - 6	Ŋ		512	145	105	94	265	122	115	105	354	122	124	421	210	165	126	751	63	91	450	117	229	307	230	416	190
	$w_{\rm B}/$	\mathbf{Pb}		168	62	40	41	121	50	49	47	125	56	49	189	105	70	51	264	25	39	155	48	89	125	76	165	72
	마 또 厚	口近影	LS10-10-2.1	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55

宫江华等: 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属

图 4 龙首山地区 6 个样品代表性锆石 CL 图像特征

Fig. 4 Representative zircon CL images of six samples in Longshoushan area

25 个谐和或近谐和数据的²⁰⁷ Pb/²⁰⁶ Pb 年龄介于 2 001 ±9~2 073 ±7 Ma 之间,加权平均值为 2 014 ± 17 Ma(MSWD = 0.13)。较大年龄群中,13 个锆石 Th/U 比介于 0.26~0.76,所拟合的不一致线的上 交点年龄为 2 164 ± 24 Ma(MSWD = 0.77),其中 8 个谐和数据点²⁰⁷ Pb/²⁰⁶ Pb 年龄介于 2 135 ± 6~2 172 ±9 Ma 之间,加权平均值为 2 146 ± 12 Ma(MSWD

=3.1)

以上定年结果显示此变沉积岩样品的碎屑锆石 年龄主要集中在 2 014 ± 17 Ma 和 2 146 ± 12 Ma ,并 遭受了 1.89 Ga 的变质事件。

3.2.2 LS10-10-2.1

混合岩化片麻岩中的锆石呈自形柱状、浑圆状、 次圆状和他形不规则状,长轴一般 100~200 µm,长

图 5 龙首山地区 6 个样品锆石 U-Pb 年龄谐和图 Fig. 5 Zircon U-Pb concordia diagrams of six samples in Longshoushan area

宽比 1:1~2:1,CL 图像显示锆石主要分为两类:一类锆石的核部具有典型振荡环带,为岩浆成因的核

(图 4b,如测点 33)边部较窄(1~50 µm),显示出无 环带、弱发光特征,为变质增生或重结晶形成的变质 边;第二类锆石无明显内部结构,弱发光(图 4b,如测 点 4),可能为变质重结晶或新生锆石。

此样品共进行了 55 个数据点的测定(表 1)。6 个数据点来自第一类锆石的边部和第二类锆石(测 点 4、9、31、39、46、49),Th/U 比值介于 0.007~ 0.28。其中 5 个测点年龄谐和或近谐和 ²⁰⁷Pb/²⁰⁶Pb 年龄范围为 1 884±3~1921±12 Ma 加权平均值为 1 895±17 Ma(MSWD=7.1),为变质作用时代。

在具有岩浆锆石特征的核中,测点 14 获得谐和 的年龄数据²⁰⁷Pb/²⁰⁶Pb年龄为 2 486±9 Ma,代表了 太古宙晚期—古元古代早期的岩浆事件。测点 13 (207 Pb/²⁰⁶Pb年龄为 2 289±24 Ma)与测点 19 (207 Pb/²⁰⁶Pb年龄 2 360±10 Ma)明显偏离谐和线。 其余 46 个来自锆石核部的数据显示出谐和或近谐 和的特征,锆石 Th/U 比值介于 0.3~1.4,²⁰⁷Pb/ ²⁰⁶Pb年龄范围在 1 932±12~2 172±14 Ma 之间(图 5b)。较大的年龄跨度可能与变质重结晶作用有关, 较小的年龄值可能反映了岩浆锆石经历了部分变质 重结晶作用的改造。因此,我们把~2 172±14 Ma 作为该样品原岩的岩浆结晶年龄。

3.2.3 LS10-9-7.1

斜长角闪岩中的锆石呈自形浑圆状、次圆状或 短柱状 颗粒较小,一般100~150 μm,长宽比为1:1 ~1.5:1。CL图像显示锆石缺乏明显内部结构,弱 阴极发光(图4c),部分锆石内部显示出杉树状特征, 为典型变质成因锆石。

60 个锆石的 U-Pb 定年测试结果(表 1)显示,全 部锆石 Th/U 比介于 $0.15 \sim 0.6$ 之间, 207 Pb/ 206 Pb 年龄范围为 $1825 \pm 11 \sim 1883 \pm 9$ Ma 除去偏离谐和 线的两个数据,其余测点的锆石年龄拟合的不一致 线的上交点年龄为 1856 ± 6 Ma(MSWD = 0.76), 加权平均年龄为 1853 ± 3 Ma (MSWD = 0.029)。 因此 ~ 1.85 Ga 代表了龙首山发生区域变质事件的 时代。

3.2.4 LS10-1-10.1

此片麻岩样品中的锆石晶形完好,多呈自形柱状颗粒较大,长轴一般300~400 µm,长宽比约为 1.5:1~3:1。CL图像显示锆石主要分为两种类型: 一类锆石缺乏内部结构,CL弱发光(图4d,如9号测点),可能为变质重结晶锆石;另一类锆石具有核边 结构,核部显示强发光特征,具有不太明显的振荡环带,为继承岩浆锆石核,其边部呈无环带、弱发光特 征(图4d,如14、15号测点),为变质增生或重结晶形 成的变质边。

50 个锆石 U-Pb 定年测试结果(表 1)显示,16 个继承岩浆锆石核的数据点 Th/U 比介于 0.2~ 0.83 之间,其中谐和或近于谐和的²⁰⁷Pb/²⁰⁶Pb 年龄 范围主要为 2004 ± 22~2094 ± 21 Ma。从谐和图中 可以发现,锆石年龄有反向不谐和的特点,部分落于 谐和线上方,这可能是由于实验原因导致。全部 16 个年龄数据拟合的不一致线上交点年龄为 2032 ± 29 Ma(MSWD=0.78),其中 8 个谐和或近谐和的年 龄加权平均值为 2041 ± 21 Ma(MSWD=1.3),代表 了片麻岩原岩岩浆结晶年龄。

其余 34 个测点来自 CL 弱发光的第一类锆石和 第二类锆石的边部,Th/U 比介于 0.003~0.1 之间。 其中谐和或近谐和的锆石 U-Pb 年龄范围介于 1 898 ±21~1 988 ±21 Ma 之间,大多锆石年龄显示反向 不谐和的特点,可能是由于实验原因造成。全部 34 个变质年龄拟合的不一致线上交点年龄为 1 927 ± 11 Ma(MSWD=0.61),其中 21 个谐和或近谐和的 年龄加权平均值为 1 939 ±11 Ma(MSWD=1.2),解 释为片麻岩经历的变质作用时代。

3.2.5 LS10-3-2.1

二云母石英片岩中的锆石呈自形柱状、次圆状 和他形不规则状,长轴约 150~300 µm,长宽比介于 1:1~3:1 之间。CL 图像显示大部分锆石具明显或 不明显的振荡环带,部分锆石具有窄的、无环带、弱 发光的边(图 4e,如测点 7、8)。

49 个锆石的 U-Pb 定年测试结果显示在表 1 中。除测点 7(Th/U=0.008)外,其余 48 个数据点 的 Th/U 比值介于 0.2~0.8 之间,其中谐和或近谐 和的锆石²⁰⁷Pb/²⁰⁶Pb 年龄范围为 1 974 ± 27~2 091 ± 26 Ma。部分数据点明显不谐和,所有数据点拟合 的不一致线上交点年龄为 2 029 ± 11 Ma(MSWD= 1.6),其中 28 个谐和年龄的加权平均值为 2 030 ± 16 Ma(MSWD=2.1),两者在误差范围内一致 2.03 Ga 代表变沉积岩源区岩石年龄。

3.2.6 LS10-6-5.1

云母石英片岩中的锆石呈自形柱状、次圆状和 少量他形不规则状。长轴约 150~400 μm,长宽比 介于 1:1~4:1 之间。CL 图像显示大部分锆石具有 明显或不太明显的振荡环带(图 4f),部分锆石具有 窄的、弱发光的边(1~50 μm)。

50 个锆石的 U-Pb 定年测试结果显示在表 1 中。所有碎屑锆石 Th/U 比介于 0.2~0.9 之间,在 年龄谐和图上(图 5f),部分数据显示反向不谐和的 特点,可能与实验测定有关。全部数据点拟合的不 一致线上交点年龄为 2 052 ± 8 Ma(MSWD = 7.6)。 其中 16 个谐和或近谐和的年龄数据范围为 2 004 ± 9~2 094 ± 9 Ma,加权平均值为 2 054 ± 14 Ma (MSWD = 9.8),与上交点年龄在误差范围内一致, 因此 2.05 Ga 的年龄应代表此变沉积岩源区岩石年 龄。

4 讨论

4.1 龙首山岩群形成时代及墩子沟群底部变沉积 岩物源区

LA-ICP-MS 锆石 U-Pb 定年获得的年龄结果显 示,龙首山岩群下部岩段花岗质片麻岩(LS10-1-10.1)中的岩浆锆石结晶年龄为2041±21 Ma,混合 岩化花岗片麻岩(LS10-10-2.1)原岩岩浆锆石结晶 年龄为~2172±14 Ma。由于遭受变质变形作用的 强烈改造,这些花岗质岩石与变沉积岩的关系已不 清楚,推测其与变沉积岩原为侵入接触关系。假如 如此,龙首山岩群的下部岩石可能形成于古元古代 中期以前。龙首山岩群最上部岩段云母石英片岩 (LS10-1-5.1)的碎屑锆石年龄主要集中在2014±17 Ma和2146±12 Ma,并遭受了~1.89 Ga的变质事 件,其原岩的沉积年龄应在2.01 Ga和1.89 Ga之 间,为古元古代中晚期。

在龙首山岩群中,除了花岗质片麻岩的极少量 继承性锆石和变沉积岩的碎屑锆石外,没有可靠的 太古宙或者晚于古元古代的年龄数据。因此龙首山 岩群应形成于古元古代。

修群业等(2002,2004)获得龙首山岩群中花岗 质片麻岩锆石 U-Pb 年龄为 1914±9 Ma,奥长花岗 岩年龄为 2015±16 Ma,斜长角闪岩单颗粒锆石年 龄 2034±16 Ma,与本文数据较为类似,也相互印证 了龙首山岩群形成于古元古代;董国安等(2007)采 集的龙首山岩群两个样品位于龙首山北部合黎山和 高台地区,与本次采集的样品不具有对比性,而另一 个在金昌附近采集的二云母片岩年龄数据大多不谐 和,不能真实地限定龙首山岩群上部变沉积岩沉积 上限。

上覆于龙首山岩群的墩子沟群上部灰岩中曾报 道有 Conophyton 叠层石(甘肃省地矿局,1989),并 由此限定墩子沟群为中元古代(蓟县系)。本次工作 采自墩子沟底部与龙首山岩群不整合接触带的变沉 积岩(LS10-3-2.1和LS10-6-5.1)中碎屑锆石年龄分 别为2030±16 Ma和2054±14 Ma,反映其碎屑锆 石来源单一,即主要来源于侵入到龙首山岩群中的 古元古代花岗质岩石。但所测定结果不能很好限定 墩子沟群的地层时代。

4.2 龙首山岩群的变质事件时代

在龙首山岩群的花岗质片麻岩和变沉积岩中, 普遍有变质新生或者变质重结晶锆石形成。混合岩 化花岗片麻岩(LS10-10-2.1)中变质重结晶锆石的 年龄介于1884±3~1921±12 Ma之间,加权平均 值为1 895 ± 17 Ma(MSWD = 7.1):花岗质片麻岩 (LS10-1-10.1) 获得的变质重结晶边的年龄为1898 ±21~1988±21 Ma,但大多数据反向不谐和,不一 致线上交点年龄为 1 927 ± 11 Ma(MSWD = 0.61); 云母石英片岩(IS10-1-5.1)中锆石变质边年龄介于 1887±4~1974±7 Ma之间,但仅1个数据近谐和, 其²⁰⁷Pb/²⁰⁶Pb 年龄为1887±4 Ma ;龙首山岩群下部 岩段的斜长角闪岩(LS10-9-7.1)中获得的变质锆石 年龄为1856±6 Ma 与陆松年等(2002)在斜长角闪 岩获得的锆石 U-Pb 年龄数据中的谐和年龄 1 864 ± 12 Ma 误差范围内一致 揭示龙首山在~1.85 Ga 期 间经历了角闪岩相区域变质事件。

以上数据显示龙首山岩群广泛经历 1.85~1.93 Ga 期间的变质事件,这期变质事件几乎被记录在所 有的龙首山岩群中不同类型的岩石中。以斜长角闪 岩获得的~1.85 Ga 代表的区域变质事件,可能代表 了龙首山古老结晶基底的最终形成时间。

4.3 龙首山岩群起源与归属

作为阿拉善地块变质基底的重要组成,龙首山 岩群的起源和归属对约束阿拉善地块的演化历史及 其归属非常关键。本文获得的年龄结果显示龙首山 岩群是阿拉善地块古元古代变质基底,并遭受了 1.85~1.93 Ga 后期变质事件。

从近年发表的文献看,龙首山岩群的年龄特征 与华北板块西北部近东西向分布的古元古代孔兹岩 系类似。该孔兹岩带近年来被认为是华北克拉通西 部陆块北部的阴山地块与南部的鄂尔多斯地块于 1.9~2.0 Ga 汇聚形成的麻粒岩相变质带(Zhao et al.,2005),具造山带性质。它主要分布在鄂尔多斯 盆地北缘,从东边的集宁杂岩开始,向西延伸陆续分 布有大青山、乌拉山、千里山和贺兰山杂岩等,但其 西延的边界一直不太明确。

万渝生等(2000)认为,华北克拉通及邻区大多 数孔兹岩系都为古元古代(2.1~2.3 Ga)甚至更晚 时期的地质产物。近年来,许多学者对孔兹岩系进 行了系统研究 集宁杂岩片麻岩中 200 多个碎屑锆 石年龄范围介于 1.84~2.1 Ga, 认为集宁杂岩沉积 物源来自古元古代岩石,不是过去认为的太古宙 (Xia et al., 2006a) 沉积年龄小于 1.84 Ga ;乌拉山 岩群中片麻岩获得的碎屑锆石年龄范围介于 1.84~ 2.32 Ga,也证明其物源来自古元古代岩石(Xia et al., 2006b);千里山杂岩中碎屑锆石获得的近谐和 年龄为 2.0~2.3 Ga,其沉积年龄小于 2.0 Ga,变质 锆石获得的变质年龄为~1.95 Ga和~1.92 Ga(Yin et al., 2009) 解释为阴山陆块与鄂尔多斯陆块碰撞 时间和后造山阶段遭受的变质作用时间;贺兰山杂 岩碎屑锆石获得 2.53~2.85 Ga 和 2.0~2.2 Ga 两 组年龄 具有太古宙年龄的碎屑锆石 暗示沉积物源 区有太古宙岩石 ,明显不同于其他孔兹岩系。 变质 锆石也获得两组年龄为~1.95 Ga 和~1.87 Ga Yin et al., 2011),~1.95 Ga 也被解释为阴山陆块与鄂 尔多斯陆块碰撞时间。

从碎屑锆石的年龄分布及变质事件的年龄来 看,龙首山岩群及相关岩石与华北陆块西部的孔兹 岩系总体上具有相似性。如果这种假设成立,孔兹 岩带似乎可以向西延伸到龙首山地区,与前人推测 的从贺兰山向南延伸明显不同,但仍需要进一步工 作来加以验证。值得注意的是,龙首山岩群的变质 程度为角闪岩相,明显低于达麻粒岩相的孔兹岩系。

另外,龙首山岩群中斜长角闪岩获得的变质年 龄~1.85 Ga,反映龙首山经历了角闪岩相区域变质 作用。这一变质事件年龄与广泛记录在华北板块内 部的吕梁造山运动发生的时间一致(Zhai et al., 2003;Wan et al.,2006),同时也是众多学者认为的 华北克拉通东、西陆块碰撞的时间(Zhao et al., 2005;Liu et al.,2010,2011)。这从另一侧面说明 龙首山岩群与华北克拉通具有亲缘性。

因此,无论龙首山岩群是华北西部陆块孔兹岩 系的西延,还是通过与华北陆块其他构造事件的对 比认为它是阿拉善地块的南部边缘,在古元古代的 早前寒武纪,它似乎应该是华北克拉通的组成部分。 然而,争议主要源自于阿拉善地块(包括龙首山地 区)分布有与扬子板块、塔里木板块类似的新元古代 (震旦系)地层组合(冰碛岩层+硅质白云岩+含磷 层)如:龙首山地区韩母山群中典型冰碛岩和含磷层 (葛肖虹等,1999)和新元古代岩浆事件,如:金川超 基性岩 827±8 Ma的结晶年龄(李献华等,2005);阿 拉善右旗可克托勒条带状花岗片麻岩 845 Ma、毕极 格台花岗闪长质片麻岩 971 Ma等(耿元生等,2002) 及许多最新的新元古代岩浆岩年龄(耿元生等, 2010)等。这些新元古代地质事件是华北克拉通的 主体所缺乏的。这是否意味着在新元古代,作为华 北克拉通一部分的阿拉善地块更接近于扬子及塔里 木克拉通,与后者一起遭受与罗迪尼亚超大陆汇聚 和裂解的构造热事件?这需要进一步研究来明确。 目前发现的阿拉善地块新元古代岩浆事件主要分布 在阿拉善地块西部边缘和北部靠近中亚造山带地 区,是否表明阿拉善地块边缘卷入了新元古代构造 热事件?这也需要进一步工作来回答。

References

- Bai Jin , Huang Xueguang and Wang Huichu. 1993. Evolution of Chinese Precambrian Crust M J. Beijing : Geological Publishing House , 259 (in Chinese with English abstract).
- Black L P , Kamo S L , Allen C M , et al. 2003. TEMORA 1 : a new zircon standard for Phanerozoic U-Pb geochronology J]. Chem. Geol. , 200 : 155~170.
- Dong Guo 'an , Yang Hongyi , Liu Dunyi , et al. 2007. Dritrial zircon SHRIMP U-Pb chronology of Longshoushan Group and geological significanc [J]. Bulletin of Science , 52 (6):688~697 (in Chinese).
- Ge Xiaohong and Liu Junlai. 1999. Formation and tectonic background of the northern Qilian orogenic belt J]. Earth Science Frontiers, 6 (4):223~230 (in Chinese with English abstract).
- Ge Xiaohong and Liu Junlai. 2000. Broken "Western China Craton " [J]. Acta Petrologica Sinica , 16(1):59~66(in Chinese with English abstract).
- Geng Yuansheng , Wang Xinshe and Shen Qihan. 2002. The discovery of Neoproterozoic Jiningian deformed granites in Alax area and its significanc∉ J]. Acta Petrologica et Mineralogica , 21(4): 412 ~ 420 (in Chinese with English abstract).
- Geng Yuansheng , Wang Xinshe and Shen Qihan. 2006. Redifinition of the Alax Group of Precambrian metamorphic basement in Alax region , Inner Mongolia J]. Geology in China , 33(1):138~145 (in Chinese with English abstract).
- Geng Yuansheng , Wang Xinshe and Shen Qihan. 2007. Chronology of the Precambrian metamorphic series in the Alax , Inner Mongolia J]. Geology in China , 34(2): 251 ~ 261 (in Chinese with English abstract).
- Geng Yuansheng and Zhou Xiwen. 2010. Early Neoproterozoic granite events and their geological significance J]. Acta Petorlogica et Mineralogica, 29(6):779~795 (in Chinese with English abstract).
- Gong Baojun. 1986. Proterozoic in Gansu[A]. Pricambrian Geology

- [C]. Beijing : Geological Publishing House , 205~218 (in Chinese). Wan Yu
- Li Junjian , Shen Baofeng and Li Huimin. 2004. Single-zircon U-Pb age of granodioritic gneiss in the Bayan UI area , Western Inner Mongolia
 [J]. Geological Bulletin of China , 23 (12): 1243 ~ 1245 (in Chinese with English abstract).
- Li Xianhua, Su Li and Song Biao. 2005. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. J J. Chinese Science Bulletin, 49(4):420~422.
- Liu Chaohui , Zhao Guochun , Sun Ming , et al. 2010. U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications[J]. Gondwana Research. doi:10.1016/j.gr.2010.11.016.
- Liu Chaohui , Zhao Guochun , Sun Min , et al. 2011. U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the LüliangComplex : Constraints on the timing of collision between the Eastern and Western Blocks , North ChinaCraton[J]. Sedimentary Geology , 236 : 129~140.
- Liu Xueya and Wang Quan. 1993. Tectonics of the Longshoushan ancient rift and Hexi corridor J]. Buttetin of the Chinese Academy of Geological Sciences , $27 \sim 28$: $1 \sim 14$ (in Chinese with English abstract).
- Ludwig K R. 1999. Using Isoplot/EX, version 2, A geochronological Toolkit for Microsoft Excel[A]. Berkeley Geochronogical Center Special Publicatior[C].1a, 47.
- Lu Songnian , Yu Haifeng and Jin Wei. 2002. Microcontinents on the eastern margin of Tarim paleocontinent[J]. Acta Petorlogica et Mineraligica , 21(4):317-326 (in Chinese with English abstract).
- Pan Yangyang. 1986. Archaean greenstone belt on the Alashan block [J]. Scientia Geologica Sinica, 2:200(in Chinese).
- Ren Jishun , Jiang Chunfa and Zhang Zhengkun. 1980. Tectonics and Tectonic Evolution of China M]. Beijing : Science Press , 35~52 (in Chinese).
- Shen Qihan, Geng Yuansheng and Wang Xinshe. 2005. Petrology, geochemistry, formation environment and ages of Precambrian amphibolites in Alxa regior[J]. Acta Petrologica et Mineralogica, 24(1):21 ~31(in Chinese with English abstract).
- Song Biao , Zhang Yuhai , Wan Yusheng , *et al* . 2002. Mount making and procedure of the SHRIMP dating J]. Geological Review , 48 : $26 \sim 30$ (in Chinese with English abstract).
- Tang Zhongli and Bai Yunlai. 1999. Geotectonic Framework and metallogenic system in the southwest margin of north china paleocontinent [J]. Earth Science Frontiers, 6(2): 271 ~ 283(in Chinese with English abstract).
- Tang Zhongli and Bai Yunlai. 2000. The Geotectionic setting of the large and superlarge mineral deposits in the southwest margin of north China paleoplate[J]. Acta Geologica Gansu, 9(1): 1~15 (in Chinese with English abstract).
- Wan Yusheng , Geng Yuansheng and Liu Fulai. 2000. Age and composition of the Khondalite series of the North China Craton and its adjacent area [J]. Peogress in Precambrian Research , 23(4):221~237 (in Chinese with English abstract).

- Wan Yusheng , Wilde Simon A and Liu Dunyi. 2006. Further evidence for~1.85 Ga metamorphism in the Central Zone of the North China Craton : SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area , Henan Province J]. Gondwana Research , 9 : 189 ~197.
- Wan Yusheng , Xu Zhiqin and Yang Jingsui. 2003. The Precambrian High-grade basement of the Qilian terrane and neighboring areas : Its ages and compositions [J]. Acta Geoscientia Sinica , 24(4): 319 \sim 324(in Chinese with English abstract).
- Wang Huichu and Lu Songnian. 2005. The Paleoproterozoic geological records in North China Craton and their tectonic significanc [J]. Geological Survey and Research , 28(3): 129 ~ 143(in Chinese with English abstract).
- Wang Yunshan and Chen Jiniang. 1987. Metamorphic Terrain and Metamorphism in Qinghai and Adjacent Areas M J. Geological Publishing House, 226~227 (in Chinese).
- Whitney D L and Evans B W. 2010. Abbreviations for names of rockforming minerals J] American Mineralogist, 95:185~187.
- Xia X P , Sun Min , Zhao Guochun , et al. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex , North China Craton and its tectonic significance J J. Precambrian Research , 144 : 199~212.
- Xia X P , Sun Min , Zhao Guochun , et al. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites : Constraints on the evolution of the Ordos Terrane , Western Block of the North China Crator[J]. Earth and Planetary Science Letters , 241 : 581 ~ 593.
- Xiu Qunye, Lu Songnian and Yu Haifeng. 2002. The isotopic age evidence for main Longshoushan Group contributing to Palaeoproterozoic [J]. Progress in Precambrian Research, 25(2):93~96(in Chinese with English abstract).
- Xiu Qunye, Yu Haifeng and Li Quan. 2004. Discussion on the petrogenic time of Longshoushan Group, Gansu Province J. Acta Geologica Sinica, 78 (3): 366~373 (in Chinese with English abstract).
- Xu Andong and Jiang Xiudao. 2003. Characteristics and geological significance of the Dunzigou group of the mesoproterozoic in the western edge of the north China platform[J]. Journal of Chang 'an University (Earth Science Edition), 25(4):27~31(in Chinese with English abstract).
- Yang Zhende, Pan Xingshi and Yang Yifu. 1988. The Geological Structures and Mineral Resources in the Alashan Block and Adjacent Areas [M]. Beijing: Science Press, 208~209 (in Chinese).
- Yin Changqing , Zhao Guochun , Sun Min , et al. 2009. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex : Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Crator[J]. Precambrian Research , 174 : 79~94.
- Yin Changqing , Zhao Guochun , Guo Jinghui , et al. 2011. U-Pb and Hf isotopic study of zircons of the Helanshan Complex : Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Crator[J]. Lithos , 122 : 25~38.
- Zhai Mingguo and Liu Wenjun. 2003. Palaeoproterozoic tectonic history

of the North China craton : a review [J]. Precambrian Research, 122:183~199.

- Zhang Xinhu, Liu Jianhong and Xu Jiale. 2005. Second study on plate tectonics in Gansu Provinces J]. Acta Geologica Gansu, 14(2):1 ~10 (in Chinese with English abstract).
- Zhao Guochun, Sun Min, Wilde S A, et al. 2005. Late Archaean to Palaeoproterozoic evolution of the North China Craton : key issues revisited J J. Precambrian Research, 136 : 177~202.
- Zhou Hongying , Mo Xuanxue and Li Junjian. 2007. The U-Pb isotopic dating age of single zircon from biotite plagioclase gneiss in the Qinggele area , Alashan , western Inner Mongolia[J]. Bulletin of Mineralogy , Petrology and Geochemistry , 26 (3): 221 ~ 223 (in Chinese with English abstract).

附中文参考文献

- 白 瑾,黄学光,王惠初.1993.中国前寒武纪地壳演化[M].北京: 地质出版社,259.
- 董国安,杨宏仪,刘敦一,等.2007.龙首山岩群碎屑锆石 SHRIMP U-Pb年代学及其地质意义[J].科学通报,52(6):688~697.
- 甘肃省地质矿产局. 1989. 甘肃省区域地质志[M]. 北京:地质出版社, 10~12.
- 甘肃省地质矿产局. 1997. 甘肃省岩石地园 M]. 武汉:中国地质大 学出版社,62~64.
- 葛肖虹,刘俊来.1999.北祁连造山带的形成与背景[J],地学前缘, 6(4):223~230.
- 葛肖虹,刘俊来. 2000. 被肢解的"西域克拉通 []]. 地学前缘,16 (1):59~66.
- 耿元生,王新社,沈其韩,2002.阿拉善地区新元古代晋宁期变形花 岗岩的发现及其地质意义[J].岩石矿物学杂志,21(4):412∼ 420.
- 耿元生,王新社,沈其韩.2006.内蒙古阿拉善地区前寒武纪变质基 底阿拉善群的再厘定Ⅰ]中国地质,33(1):138~145.
- 耿元生,王新社,沈其韩.2007.内蒙古阿拉善地区前寒武纪变质岩 系形成时代的初步研究[].中国地质,34(2):251~260.
- 耿元生,周喜文. 2010. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志, 29(6):779~795.
- 宫保军. 1986.甘肃的元古咒 A].前寒武纪地质 C].第3号,北京: 地质出版社,205~218.
- 李俊建,沈保丰,李惠民. 2004. 内蒙古西部巴彦乌拉山地区花岗闪 长质片麻岩的单颗粒锆石 U-Pb法年龄[J]. 地质通报,23(12): 1143~1145.
- 李文渊. 1991. 龙首山地区的震旦系[J]. 西北地质, 12(2):1~5.
- 李献华,苏犁,宋 彪. 2004. 金川超镁铁侵入岩 SHRIMP 锆石

U-Pb年龄及地质意义[J]. 科学通报,49(4):401~402.

- 刘雪亚,王 荃. 1993. 龙首山古裂谷带及河西走廊的大地构造 J]. 中国地质科学院院报, 27~28:1~13.
- 陆松年,于海峰,金 巍. 2002. 塔里木古大陆东缘的微大陆块体群 []]. 岩石矿物学杂志, 21(4):317~326.
- 潘杨杨. 1986. 阿拉善断块的太古代绿岩带[J]. 地质科学,(2): 200.
- 任纪舜,姜春发,张正坤,等. 1980. 中国大地构造及其演化[M]. 北 京:科学出版社,1~124.
- 沈其韩,耿元生,王新社.2005. 阿拉善地区前寒武纪斜长角闪岩的 岩石学、地球化学、形成环境和年代学[]].岩石矿物学杂志,24 (1):21~31.
- 宋 彪,张玉海,万渝生,等. 2002. 锆石 SHRIMP 样品靶制作、年龄 测定及有关现象讨论[J]. 地质论评,48(增刊):26~30.
- 汤中立,白云来. 1999. 华北古大陆西南边缘构造格架与成矿系统 [J]. 地学前缘, (2):271~283.
- 汤中立,白云来. 2000.华北板块西南边缘构大型、超大型矿床的地 质构造背景[J].甘肃地质学报,9(1):1~15:
- 万渝生,耿元生,刘福来,等.2000.华北克拉通及邻区孔兹岩系的时代及对太古宙基底组成的制约[J].前寒武纪研究进展,23
- 万渝生,许志琴,杨经绥,等.2003.祁连造山带及邻区前寒武纪深变 质基底的时代和组成J].地球学报,24(4):319~324.
- 王惠初,陆松年.2005.华北克拉通古元古代地质记录及其构造意义 [1].地质调查与研究,2%(3):129~143.
- 王云山,陈基娘.1987. 青海省及其毗邻地区变质地质及变质作用[M].北京:地质出版社,226~227.
- 修群业,陆松年,于海峰.2002.龙首山岩群主体划归古元古代的同 位素年龄证据[J].前寒武纪研究进展,25(2):93~96.
- 修群业,于海峰,李 铨.2004. 龙首山岩群成岩时代探试[J]. 地质 学报,78(3):366~373.
- 许安东,姜修道.2003.华北地台西缘中元古界蓟县系墩子沟群特征 及其地质意义[J].长安大学学报(地球科学版),25(4):27~ 31.
- 杨振德,潘行适,杨易福. 1988. 阿拉善断块及邻区地质构造特征与 矿产(M].北京:科学出版社,1~254.
- 翟明国,卞爱国.2000.华北克拉通新太古代末超大陆拼合及古元古 代末-中元古代裂解[]]中国科学D辑,30(增刊):129~137.
- 张新虎. 1992. 龙首山古裂谷带的基本特征及其演化历史[J]. 西北 地质,13(1):6~13.
- 张新虎,刘建宏,徐家乐.2005. 再论甘肃省的板块构造 J]. 甘肃地 质学报,14(2):1~10.
- 周红英,莫宣学,李俊健.2007.内蒙古阿拉善庆格勒图黑云斜长片 麻岩的单颗粒锆石 U-Pb 法年龄[J].矿物岩石地球化学通报, 26(3):221~223.