河北小寺沟蛇纹石玉的矿物成分和化学成分研究

范桂珍 ,王时麒 ,刘 岩

(北大宝石鉴定中心,北京 100871)

摘 要:在野外地质调查的基础上,通过显微薄片观察、电子探针分析、X 射线衍射分析、红外光谱分析、X 射线荧光 光谱分析、微量元素分析、稀土元素分析等现代测试方法对河北小寺沟蛇纹石玉的矿物成分、化学成分进行了研究。 结果表明,小寺沟蛇纹石玉为富镁碳酸盐岩蚀变形成的蛇纹岩,其主要矿物成分为利蛇纹石,次要矿物成分有方解 石、白云石、透辉石、金云母、磁铁矿、黄铁矿等。蛇纹石玉的稀土元素来源于围岩大理岩,其稀土元素球粒陨石标准 化配分图与其围岩大理岩的稀土配分图非常相似,为陡右倾型,具有稀土元素总量较低、富集轻稀土、具 δEu 负异常 的特点。

关键词:蛇纹石玉 利蛇纹石 ;富镁碳酸盐岩 ;小寺沟 ;河北 中图分类号:P578.964;P579 文献标识码 :A

文章编号:1000-6524(2011)80-0133-11

A study of mineral and chemical compositions of Xiaosigou serpentine jade, Hebei Province

FAN Gui-zhen, WANG Shi-qi and LIU Yan (Gems Appraisal Center of Peking University, Beijing 100871, China)

Abstract: Based on geological field work, the authors studied mineral composition and chemical composition by using modern testing methods of observing microscopic sections and such means as EMPA, XRD, IR, XRF and ICP-MS. The results indicate that the Xiaosigou serpentine jade was formed through alteration of Mg-rich carbonate, and its main mineral is lizardite, and subordinate minerals include calcite, dolomite, diopside, phlogopite, magnetite, pyrite etc. REE of serpentine originated from marble and surrounding rock. The chondrite-normalized REE patterns of Xiaosigou serpentine jade are quite similar to those of sedimentary rocks, with steeply rightly-oblique shape, characterized by low REE amount, rich LREE and negative anomalies. **Key words:** serpentine jade; lizardite; Mg-rich carbonate; Xiaosigou; Hebei Province

蛇纹石玉是人类最早认识和利用的玉石品种之 一,在中国距今约7000年的新石器时代文化遗址中 出土了大量的蛇纹石玉器。我国产出蛇纹石玉的主 要地区有辽宁岫岩、营口、甘肃酒泉、广东信宜、广西 陆川、山东泰山等等,而河北平泉县小寺沟地区的蛇 纹石玉鲜有报道。本文对该地区的蛇纹石玉进行了 较为系统的研究,为寻找类似玉矿提供找矿依据,同 时对丰富蛇纹石玉的知识体系、促进市场开发利用 具有重要的意义。

1 矿区地质概况

小寺沟蛇纹石玉矿床地处河北省平泉县小寺沟 镇北杖子村,位于小寺沟斑岩铜钼矿床正东约300m 处的蛇纹石化蚀变带上。矿区处于华北地台内蒙地 轴与燕辽沉降带交接处的东南端,区内主要地层为 上元古界蓟县系雾迷山组含燧石条带白云质灰岩和 白云岩,矿区北部出露太古界迁西群古老变质岩系,

收稿日期:2011-06-20;修订日期:2011-07-07

东南端有上侏罗统火山岩。

矿区构造以断裂为主,按展布方向分为3组(韩 秀丽等,1998):东西向断层,为宣化-承德-北票深断 裂的一部分:北东向断层,主要有铜洞子沟断层和水 泉沟断层:北西向断层,主要有四道沟断层和出现在 白云岩中同一方向的断层。小寺沟含矿斑岩体沿断 层侵入,是本区的主要控矿构造。区内岩浆活动频 繁,以燕山期最为剧烈,岩性多样,从超基性、基性、 酸性岩及碱性岩均有出露,以中酸性岩为主。矿区 ^国岩蚀变强烈,花岗岩的蚀变主要有钾化、硅化、黄 铁绢英岩化和粘土化。碳酸盐岩围岩的蚀变主要为 大理岩化、砂卡岩化和蛇纹石化。矿体主要产于岩 体和围岩的东南接触带上。

小寺沟蛇纹石玉矿床(图 1a)赋存于花岗岩与碳酸盐岩(图 1b)的接触带外带,呈透镜状、条带状、似层状(图 1c)、脉状(图 1d)等产出,其发育程度与蛇纹石化的强弱及规模大小相关。矿体中常出现黑黄相间、与层理方向一致的条带,主要由黄绿色蛇纹石和黑色蛇纹石排列而成。

图 1 小寺沟蛇纹石玉矿野外照片

Fig. 1 Field photographs of serpentine deposit in Xiaosigou
 a一玉矿全貌; b一未蚀变完全的碳酸盐岩; c一矿体呈似层状分布; d一矿体呈细脉、网脉状产出
 a一panorama of serpentine deposit; b—incompletely altered carbonate; c—stratoid ore body; d—veinlet and stockwork ore body

2 蛇纹石玉的矿物成分

通过偏光显微镜、电子探针分析、红外光谱分析、X射线衍射分析方法确定了小寺沟蛇纹石玉矿

床的矿物成分特征。

2.1 外观特征

小寺沟蛇纹石玉的颜色多样,有浅黄色、黄色、 黄绿色、绿色、黑色、黑黄相间斑杂色等色调,其中以 黄绿色为主(图2)。样品中常见白色碳酸盐矿物的 交代残留,以大小不一的团块状分布于蛇纹石中。 样品中还可看到不同期次的蛇纹石细脉相互穿插, 与其他部分相比,蛇纹石细脉处往往质地更为细腻, 透明度更高。样品主要呈致密块状构造、条带状构造,隐晶质结构,部分样品可见纤维状定向排列的特 点。本文主要研究的标本及其特征如表1所示。

表1 原石样品的外观特征描述

Table 1	Appearance	description of	samples
---------	------------	----------------	---------

样品编号	外观描述
Λ-1	浅黄色蛇纹石穿插于白色碳酸盐矿物中
Λ-2	黄色,局部黑色,穿插有不同期次蛇纹石脉
B-1	黄色,表面有少量白色碳酸盐矿物,局部有黄褐色矿物浸染分布
B-2	黄色为主,有少量黑色细脉,表面有白色碳酸盐矿物
C-1	黄绿色,质地疏松,裂隙发育,有白色碳酸盐矿物分布
C-2	黄绿色,伴有白色碳酸盐矿物
D-1	黄色,绿色,有少量褐色物质浸染,比较细腻
D-2	绿色,有点状、线状褐色物质浸染,比较细腻
E-1	黑色,局部呈黄绿色,表面伴有碳酸盐
E-2	黑色,局部黑黄色交加,可见金属矿物
F-1	黑色、黄色相间,黑色呈条带状分布

2.2 显微薄片观察

在偏光显微镜下对样品薄片进行观察,主要矿物为蛇纹石,次要矿物有方解石、白云石、透辉石、金 云母、磁铁矿、黄铁矿等。

2.2.1 蛇纹石

薄片中蛇纹石矿物颗粒大小一般为 0.01~0.1 mm,大者达 0.2~0.3 mm,晶形以叶片状(图 3a)、鳞 片状(图 3b)、纤维状(图 3c)为主,常呈集合体形态, 有时可见 {001}完全解理。蛇纹石矿物在单偏光下 呈无色至淡黄色,正低突起,干涉色为一级灰白至一 级黄,平行消光或近平行消光,也常出现波状消光。 薄片中不同期次的蛇纹石矿物接触交代现象明显, 常可见晚期蛇纹石矿物以枝脉状穿插于早期蛇纹石 矿物中(图 3d),这反映了成矿具多阶段、多期次性。 蛇纹石中普遍可见交代假像结构(图 3e),即碳酸盐 矿物完全被蛇纹石交代成具有圆滑边缘的环带,而 保留了碳酸盐矿物的假像。

2.2.2 碳酸盐矿物

蛇纹石中最常见的伴生矿物,主要有方解石(图 3f)和白云石。碳酸盐矿物常以两种形式存在,一种 是早期白云质大理岩的交代残余(图 3g),另一种是 后期以方解石脉穿插在蛇纹石矿物中。碳酸盐矿物 的电子探针结果如表 2、表 3 所示。

图 3 样品显微照片

Fig. 3 Microphotos of samples

a一蛇纹石的叶片状变晶结构,+;b一蛇纹石的鳞片状变晶结构,+;c一蛇纹石的纤维状变晶结构,+;d一晚期蛇纹石穿插于早期蛇纹石 中,+;e一蛇纹石的交代假像结构,+;f一具菱形解理的方解石,+;g一蛇纹石中残留的碳酸盐矿物,+;h一透辉石的边缘蛇纹石化,+; i一磁铁矿以团块状集合体分布于蛇纹石中,-;j一反光下黄铁矿呈浅黄铜色

a foliaceous texture of serpentine, +: b lepidoblastic texture of serpentine, +: c fibrous blastic texture of serpentine, +: d early serpentine penetrated by late serpentine, +: e metasomatic pseudomorph texture of serpentine, +: f calcite with cleavage rhombus, +: g remnant carbonate minerals in serpentine, +: h altered serpentine in edge of diopside, +: magnetite lump aggregate in serpentine, -: j brassy pyrite under reflection light

					H J / C J J/ K KI	22 10 1 10				$\omega_{\rm B}$ /0
			Table	2 Electron	microprobe	e analyses of	calcite			
样品号	Cr_2O_3	Al_2O_3	Na ₂ O	FeO	MgO	CaO	MnO	NiO	P_2O_5	总量
A-1	/	0.02	/	/	1.52	53.94	0.02	0.01	0.02	55.54
A-2	/	0.01	0.02	0.08	4.7	47.28	0.01	/	/	52.09
E-1	0.03	/	0.05	/	0.13	55.41	0.25	0.04	0.10	56.00
E-1	0.01	/	/	0.08	5.01	52.60	0.01	/	0.07	57.79

表 う 方解石的由子探针分析化学成分

表 3 白云石的电子探针分析的化学成分 $w_{\rm B}$ /%

 Table 3
 Electron microprobe analysis of dolomite

样品号	$\mathrm{Cr}_2\mathrm{O}_3$	FeO	MgO	CaO	NiO	$\mathrm{P}_{2}\mathrm{O}_{5}$	总量
A-2	0.02	0.09	20.72	31.28	/	0.01	52.10
E-1	0.02	0.36	20.07	31.49	0.01	0.01	51.95

2.2.3 透辉石

透辉石单偏光下无色,呈粒状,正高突起,正交 偏光下呈鲜艳的二级干涉色,斜消光。部分透辉石 颗粒的边缘蚀变为蛇纹石(图 3h)。透辉石的电子探 针数据如表4 所示。

表 4 透辉石的电子探针分析化学成分

			Table 4	Electron	microprobe a	analysis of d	liopside			
样品号	SiO_2	Al_2O_3	TiO_2	FeO	MgO	CaO	K ₂ O	P ₂ O ₅	NiO	总量
E-2	56.75	0.07	0.02	0.12	19.29	25.53	0.01	0.03	0.04	101.81

2.2.4 金云母

薄片中偶尔可见,单偏光下浅黄色,长条片状,

解理完全,正低突起,正交偏光下呈二级蓝干涉色。 其化学成分如表5所示。

表 5 金云母的电子探针分析化学成分

 $w_{\rm B}$ /%

		- T	57)	Table 5	Electro	on micropr	obe anal	ysis of ph	logopite				
样品号	SiO ₂	Al ₂ O ₃	Na ₂ O	TiO ₂	FeO	MgO	CaO	MnO	K_2O	$\mathrm{Cr}_2\mathrm{O}_3$	P_2O_5	NiO	总量
E-1	< 40.04	14.93	0.15	0.05	2.24	27.32	0.03	0.03	9.30	0.03	0.02	0.04	94.19

2.2.5 磁铁矿 Fe₃O₄

磁铁矿是蛇纹石中常见的黑色不透明杂质,常以 条带状或团块状集合体(图 3i)分布于蛇纹石中,是黑 色调蛇纹石的主要致色矿物。薄片下观察,磁铁矿呈 黑色 不透明 反射光下钢灰色。磁铁矿以浸染状、脉 状分布于蛇纹石中 其电子探针成分分析结果见表 6。 蛇纹石因含有磁铁矿而具有磁性 磁性强弱与磁铁矿 含量有关 ,含磁铁矿越多 磁性越强 反之亦然。

表 6 磁铁矿的电子探针分析化学成分 Table 6 Electron microprobe analyses of magnetite

₩B**/%**

 $w_{\rm B}$ /%

样品号	Na ₂ O	CaO	Cr_2O_3	MgO	MnO	TiO_2	$\mathrm{Fe_2O_3}$	NiO	Al_2O_3	SiO_2	总量
A-2	/	/	0.02	4.19	0.67	/	88.78	/	0.08	0.06	93.79
E-1	0.04	0.08	0.01	2.88	0.84	0.00	89.70	0.00	0.00	0.20	93.78
E-2	0.01	0.14	0.02	2.04	0.71	0.01	91.29	0.02	0.03	0.65	94.93
F-1	0.01	0.03	0.02	1.98	1.99	0.02	91.07	/	/	0.03	95.38

2.2.6 黄铁矿 FeS₂

薄片下 ,黄铁矿呈正方形或五角形断面 ,也常见

不规则粒状浸染分布。黑色,反射光下金属光泽,为 浅黄铜色(图3j)。黄铁矿电子探针结果如表7所示。

表 7 黄铁矿电子探针分析的化学成分

Table 7	Electron	microprobe	analysis	of	nvrite
rubic /	Litten on	meroprobe	anarysis	UI.	pjitte

样品号	Fe	S	Ni	Sb	Pb	Со	Zn	Mo	Bi	Mn	总量
E-2	45.98	53.45	0.01	0.05	0.13	0.07	0.04	0.81	0.31	0.03	100.89

137

2.3 电子探针分析

在薄片观察的基础上,选取样品的主要矿物进 行电子探针分析。本次实验采用核工业北京地质研 究院的 EPMA-1600 型电子探针,加速电压为 15 kV,电流为7 nA,束斑直径为1 μ m。探针结果如表 8 所示,从表中可见,该地蛇纹石主要由 SiO₂ 和 MgO 组成 SiO₂ 为 40.94% ~44.87%(个别测点 E-1-b 中 SiO₂ 含量为 36.46%,可能与 Fe 含量过高有 关) MgO为 38.24%~42.15% 相对于蛇纹石矿物 的理论值(MgO 为 43.64% ,SiO₂ 为 43.36%(王濮 等 ,1987) ,贫镁。

通过计算所得的蛇纹石矿物化学式见表 9,与理 想蛇纹石的晶体化学式 Mg [Si₄O₁₀]OH₈ 基本一致。 电子探针成分分析及化学式的计算结果表明,蛇纹 石晶格中普遍存在有类质同像替代,其中以 Fe 替代 八面体中 Mg 居多,Al、Mn、Ti、Ca 替代较少。

表 8 蛇纹石电子探针分析的化学成分

 $w_{\rm B}$ /%

				Table 8	Electro	n micropr	obe ana	lyses of Ser	pentine				
样品号	SiO_2	Al_2O_3	Na ₂ O	TiO ₂	FeO	MgO	CaO	MnO	K_2O	Cr_2O_3	P_2O_5	NiO	总量
A-2-a	43.15	0.20	0.00	0.03	1.58	40.53	0.05	0.03	0.00	0.00	0.00	0.00	85.56
A-2-b	43.31	0.34	0.01	0.00	1.45	40.37	0.05	0.00	0.00	0.03	0.01	0.00	85.54
В-2-а	42.17	0.02	.03	0.00	1.27	42.15	0.01	0.09	0.01	0.02	0.02	0.04	85.82
B-2-b	41.41	0.02	0.00	0.00	1.52	40.71	0.03	0.06	0.01	0.01	0.00	0.00	83.78
D-1-a	44.87	0.26	0.01	0.00	1.50	41.63	0.00	0.07	0.00	0.00	0.08	0.00	88.41
D-1-b	43.72	0.55	0.00	0.02	1.24	40.03	0.00	0.05	0.00	0.02	0.00	0.00	85.63
D-1-c	43.87	0.62	0.00	0.00	1.49	40.29	0.02	0.01	0.01	0.00	0.00	0.03	86.33
D-1-d	44.68	0.44	0.03	0.03	1.21	41.10	0.00	0.06	0.03	0.00	0.01	0.00	87.58
D-1-e	42.79	0.07	0.00	0.00	0.83	40.51	1.64	0.02	0.01	0.02	0.03	0.04	84.38
D-2-a	41.60	0.04	0.02	0.00	1.16	39.56	0.02	0.07	0.01	0.04	0.00	0.00	82.51
D-2-b	41.98	0.05	0.00	0.00	0.63	39.42	0.08	0.16	0.00	0.00	0.02	0.00	82.34
E-1-a	40.94	0.01	0.00	0.00	3.29	39.61	0.09	0.04	0.00	0.01	0.02	0.00	84.01
E-1-b	36.46	0.01	0.16	0.00	8.82	38.24	0.00	0.07	0.03	0.02	0.01	0.00	83.82
E-1-c	42.74	-<0.00	0.00	0.00	1.69	41.00	0.01	0.00	0.01	0.00	0.00	0.03	85.49
F-1	42 40	0.02	0.00	\bigcirc 0.00 \bigcirc	1 42	40.07	0 04	0.01	0.00	0.01	0.01	0.00	83 97

表 9 蛇纹石矿物晶体化学式的计算结果

Table 9 Calculated results of crystal chemical formula of serpentine

样品号	蛇纹石晶体化学式
A-2-a	($Mn_{0.0020}Ti_{0.0027}Ca_{0.0050}Al_{0.0222}Fe_{0.1245}Mg_{5.6953}$ J $Si_{4.0672}O_{10}$ J OH)
A-2-b	($Na_{0.0018}Cr_{0.0022}Ca_{0.0050}Al_{0.0377}Fe_{0.1141}Mg_{5.6657}$ J $Si_{4.0771}O_{10}$ J OH).
В-2-а	($Cr_{0.0007}Ca_{0.0010}Al_{0.0017}Na_{0.0027}Fe_{0.1002}Mg_{5.9261}$ J $Si_{3.9770}O_{10}$ J OH).
В-2-b	($Cr_{0.0008}K_{0.0012}Ca_{0.0031}Al_{0.0279}Fe_{0.1228}Mg_{58638}$) $Si_{4.0009}O_{10}$ (OH),
D-1-a	(Na _{0.0017} Al _{0.0279} Fe _{0.1143} Mg _{5.6577} J Si _{4.0904} O ₁₀ J OH) ₈
D-1-b	($Cr_{0.0015}Ti_{0.0018}Ca_{0.0020}Ni_{0.0022}Al_{0.0608}Fe_{0.0973}Mg_{5.5989}$ J $Si_{4.1018}O_{10}$ J OH)
D-1-c	($K_{0.0012}Ca_{0.0020}Ni_{0.0022}Al_{0.0681}Fe_{0.1161}Mg_{5.5986}$] $Si_{4.0891}O_{10}$] OH) $_{8}$
D-1-d	($Ti_{0.0026}K_{0.0035}Na_{0.0053}Al_{0.0476}Fe_{0.0929}Mg_{5.6232}$] $Si_{4.1004}O_{10}$] OH),
D-1-е	($K_{0.0012}Cr_{0.0015}Al_{0.0078}Fe_{0.0654}Ca_{0.1655}Mg_{5.6891}$] $Si_{4.0309}O_{10}$] OH)
D-2-a	($K_{0.0012}Ca_{0.0021}Cr_{0.0031}Al_{0.0046}Fe_{0.0947}Mg_{5.7597}$) $Si_{4.0627}O_{10}$) H).
D-2-b	(Al _{0.0057} Ca _{0.0084} Fe _{0.0514} Mg _{5.7319} J Si _{4.0945} O ₁₀ J OH) ₈
E-1-a	(Cr _{0.0008} Al _{0.0011} Ca _{0.0094} Fe _{0.2678} Mg _{5.7476} J Si _{3.9848} O ₁₀ J OH) ₈
E-1-b	($Al_{0.0012}Cr_{0.0016}K_{0.0039}Na_{0.0316}Fe_{0.7507}Mg_{5.8025}$ J $Si_{3.7110}O_{10}$ J OH).
E-1-c	($Ca_{0.0010}Ni_{0.0023}Fe_{0.1336}Mg_{5.7800}$] $Si_{4.0416}O_{10}$] OH),
F-1	($Cr_{0.0008}Ca_{0.0041}Al_{0.0223}Fe_{0.1140}Mg_{5.7352}$ J $Si_{4.0707}O_{10}$ J OH) ₈

2.4 X射线衍射分析

在北京大学 X 射线粉晶衍射实验室对 7 件样品

进行了 X 射线粉末衍射分析,实验设备型号:D/ Max-RC,实验条件 CuKa 靶,靶电压为 40 kV,靶电 流为 40 mA,发散缝 1°,接受狭缝 0.15 mm,防散射 狭缝 1°,连续扫描模式,扫描速度 8°/min。测试所 得 X射线图谱如图 4,测定数据见表 10。

由图 4 可见 样品的 X 射线衍射图谱基本相似, 与蛇纹石矿物的图谱基本一致。出现的蛇纹石矿物 的特征衍射峰有 : $d_{002} = 7.28$ Å, $d_{004} = 3.65$ Å 的强 衍射峰 , $d_{020} = 4.59$ Å, $d_{202} = 2.49$ Å, $d_{060} = 1.54$ Å 的较强衍射峰。蛇纹石族矿物主要有 3 个亚种 ,叶 蛇纹石、利蛇纹石和纤蛇纹石。叶蛇纹石以其衍射 线多而清晰为特征 , $d_{020} = 4.63$ Å ,且强度较弱 ,并有 4.28 Å, 3.95 Å 的弱衍射峰 2.52 Å 与 2.40 Å 衍射 峰成对出现 ,1.54 Å 与 1.56 Å 衍射峰成对出现 ;与 叶蛇纹石相比 利蛇纹石的 4.59 Å 衍射峰较锐、强 , 1.54 Å 与 1.50 Å 构成双峰 纤蛇纹石与利蛇纹石的 区别在于前者有 2.59 Å, 2.45 Å 的衍射峰(刘刚等 , 1986 ;刘养杰等 2009)。由此可见 ,所测样品的特征 衍射峰值与利蛇纹石相一致 ,表明该玉石的主要矿 物成分为蛇纹石的矿物亚种利蛇纹石。此外 ,A-1、

Fig. 4 X-ray diffraction pattern of serpentine

表 10	蛇约	石玉的	X射线	份晶衍卵	射分析数	て招
Table	10 >	-rav di	ffraction	data of	' serpent	ine

A-1		A-2		B-1		C-1		D-1		E-2		F-1	
d∕Å	1/1	d/Å	IN	d∕Å	1/1	d∕Å	I/I	d∕Å	I/I	d∕Å	I/I	d∕Å	I/I
16.91	1.25	7.28	100.00	7.29	100.00	7.30	100.00	7.29	100.00	7.29	100.00	16.05	1.07
7.29	100.00	4.60	21.51	4.60	12.81	4.59	18.35	4.60	16.64	4.59	17.33	7.27	100.00
4.60	16.50	3.88	4.05	3.64	43.98	3.65	51.07	3.65	54.29	3.65	58.69	4.58	17.72
3.65	56.58	3.65	58.69	2.50	14.79	3.04	55.80	2.64	5.15	3.35	4.61	3.64	48.30
3.03	32.34	3.04	40.49	2.45	14.17	2.64	6.02	2.50	19.51	3.23	46.06	2.65	3.11
2.50	25.57	2.96	13.40	2.15	2.42	2.50	25.05	2.45	17.61	3.13	7.43	2.50	27.23
2.45	H16.67	2.53	46.56	2.03	2.75	2.45	17.10	2.15	2.45	3.04	21.54	2.44	9.32
2.28	4.96	2.50	39.00	1.53	13.86	2.28	6.46	2.03	2.05	2.99	61.66	2.15	6.38
2.15	3.39	2.15	9.88			2.10	7.36	1.54	17.71	2.95	23.88	1.96	1.20
2.09	5.76	2.09	12.09			2.03	3.97	1.50	4.88	2.89	18.21	1.79	2.05
2.03	3.15	2.03	3.22			1.91	5.28			2.53	63.66	1.73	1.07
1.91	4.10	1.91	4.42			1.87	6.80			2.44	14.67	1.54	14.18
1.87	4.62	1.79	4.62			1.54	16.03			2.31	11.89	1.50	5.22
1.74	1.81	1.61	7.49			1.43	1.97			2.16	21.17	1.41	0.98
1.54	15.17	1.54	16.80								2.10	8.19	
1.50	4.62	1.50	6.47								2.03	5.59	
		1.48	6.85								1.75	6.09	
											1.63	14.76	

A-2、C-1、E-2 样品出现了 3.03 Å、2.28 Å、1.91 Å、 1.87 Å 的方解石衍射峰 ,A-2、E-2 样品出现 2.52 Å、 2.96 Å、2.09 Å、1.61 Å 的磁铁矿衍射峰 ,E-2 样品 出现有 3.34 Å、3.23 Å、2.99 Å、2.89 Å、2.30 Å、 2.15 Å、2.02 Å、1.75 Å 透辉石的衍射峰。因此样品 中次要矿物有方解石、磁铁矿、透辉石 ,与薄片观察、 电子探针分析的结果一致。

2.5 红外光谱分析

蛇纹石族矿物的红外光谱很相似,具有 3 个特 征的谱带范围,即 3 690~3 600 cm⁻¹、1 100~950 cm⁻¹、600~550 cm⁻¹,分别归属为 O—H 振动、 Si—O伸缩振动和 Si—O 弯曲振动、Mg—O 振动与 O—H 平动。 在北京大学宝石鉴定中心采用布鲁克 Tensor27 傅里叶变换红外光谱仪对样品进行了红外光谱分 析,分辨率为6 cm⁻¹,扫描范围:4000~400 cm⁻¹。 样品的红外吸收图谱(图5)基本相似,谱带分布与利 蛇纹石的谱带相一致。样品在3689 cm⁻¹附近有1 个强的谱带,峰窄而尖,为O—H 伸缩振动带,在 3651 cm⁻¹处有1个吸收肩;1082 cm⁻¹、958 cm⁻¹ 附近有两个比较强的Si—O 伸缩振动吸收谱带;615 cm⁻¹附近的吸收谱带归属为O—H 的转动振动模 式 567 cm⁻¹附近的吸收谱带归属为 Mg—O 金属离 子与氧的伸缩振动和弯曲振动模式;440 cm⁻¹吸收 谱带归属为 Si—O 的弯曲振动(王时麒等,2007;刘 养杰等,2009)。

3 蛇纹石玉的化学成分

3.1 主要化学成分

在北京大学 X 射线荧光光谱分析实验室对蛇纹 石玉样品进行了主要元素化学成分分析测试仪器: 顺序式 X 射线荧光光谱仪,仪器型号:ARL AD-VANT XP+(美国热电公司),仪器参数:铹靶端窗 下照射,最大激发电流 120 mA,最大激发电压 70 kV,最大发射功率 4.2 kW,分析元素 $F \sim U$,分析范 国 $:100\% \sim 0.001\%$,激发电流 50 mA,激发电压 50 kV,分析灵敏度 0.001%。测试结果见表 11。样品 的主要化学成分为 SiO₂ 和 MgO,其中 MgO 的含量 与理论值比较接近 SiO_2 的含量低于理论值,其次含 有 FeO、CaO、Al₂O₃等次要成分。样品中含有的次 要成分越多 SiO_2 的含量越低。样品 A-2、C-1、E-2

中因含有一定量的方解石而使得 CaO 含量较高 (3.78%~4.66%) A-2、E-2 中因含有磁铁矿而使得 FeO 的含量高于其他样品,这与 X 射线衍射分析的 数据一致。

表 11 蛇纹石玉的主要化学成分含量

w_B/%

141

Table 11 Main chemical composition of serpentine in Xiaosigou											
样品号	SiO_2	Al_2O_3	${\rm TiO}_2$	FeO	MgO	CaO	MnO	P_2O_5	烧失量	总量	
A-2	31.69	0.57	0.04	8.97	39.06	4.09	0.13	0.01	15.29	99.85	
B-1	38.85	0.58	0.01	1.14	41.63	0.17	0.09	0.01	15.01	97.49	
C-1	35.35	0.12	0.00	2.88	37.62	4.66	0.06	0.01	17.98	98.66	
D-1	40.26	0.19	0.00	0.92	43.11	0.07	0.07	0.00	14.96	99.57	
E-2	37.43	0.12	0.00	6.04	39.11	3.78	0.05	0.01	10.81	97.46	
F-1	39.64	0.08	0.00	1.97	43.50	0.28	0.01	0.01	14.31	99.86	

3.2 微量元素成分

在北京大学等离子体质谱分析实验室对样品进 行了微量元素的成分分析。仪器名称:电感耦合等 离子体质谱 ICP-MS; 仪器型号: Agilent 7500ce/cs; 仪器厂家:美国安捷仑公司;仪器 ICP 源:27.12

MHz 测试精度:大多数元素 RSD<5%。结果如表 12 所示。从表中可知,该地区蛇纹石玉中 P、Ti、 Mn、Cu、Zn的含量相对较高。与上地壳的平均成分 (赵振华,1997)相比,该地区的蛇纹石玉的 Mn、Cu、 Zn、W含量较高、Li、Be、Sc、Ti、V、Cr、Ni、Ga、Rb、Sr、

表 12 小寺沟蛇纹石玉的微量元素组成 》

 $w_{\rm B}/10^{-6}$

Table 12 Trace element composition of serpentine in Xiaosigou									
	A-2	B-1	C-1	D-1	E-2	F-1	上地壳平均值(Taylor)		
Li	0.73	0.93	1-63	1.05	0.59	0.56	20		
Be	0.07	1.03	0.26	0.32	0.14	0.13	3		
Р	24.34	21.63	62.29	17.18	27.87	24.79	/		
Sc	3.40	201	0.81	2.08	1.50	3.16	11		
Ti	326.70	70.23	10.97	19.79	18.62	29.87	3 000		
V	10.43	9.65	5.19	4.15	1.56	2.73	60		
Cr	3.39	6.76	0.25	2.01	0.08	4.39	355		
Mn	1 438.00	842.30	321.10	533.20	1668.00	658.90	600		
Co	9.87	3.07	8.72	3.80	16.75	6.50	10		
Ni	2.20	0.58	0.87	0.54	1.58	0.56	20		
Cu	545.20	191.30	8 999.10	2 412.00	9 147.00	524.50	25		
Zn	56.86	199.20	680.70	84.62	1911.00	265.30	71		
Ga	1.25	3.25	0.61	0.55	0.67	0.30	17		
Rb	0.34	0.33	0.45	0.54	0.32	0.96	112		
Sr	14.33	11.86	7.37	5.32	4.00	5.35	350		
Y	0.35	1.81	1.30	1.90	1.94	1.41	22		
Zr	20.85	5.56	1.04	1.58	4.67	78.74	190		
Nb	1.71	0.71	0.15	0.14	0.26	0.66	25		
Mo	6.13	10.32	5.94	3.83	6.12	0.86	1.5		
Cd	0.24	2.39	5.73	0.48	26.93	0.52	98		
Sn	114.60	55.34	7.87	14.12	10.04	2.85	5.5		
Cs	0.07	0.10	0.08	0.10	0.16	0.10	3.7		
Ba	5.56	253.30	5.95	174.50	6.34	188.00	550		
Hf	0.60	0.14	/	0.03	0.11	2.19	5.8		
Ta	0.18	0.04	/	0.01	0.01	0.12	2.2		
W	99.22	1.76	15.29	9.10	3.65	2.79	2.0		
Tl	0.05	0.08	0.05	0.09	0.05	0.07	750		
Pb	5.11	9.06	4.23	1.69	4.73	5.60	20		
Th	0.07	0.50	0.30	1.26	0.20	0.44	10.7		
U	1.44	0.92	0.63	0.78	1.49	0.70	2.8		

Y、Zr、Nb、Cd、Cs、Ba、Hf、Ta、Tl、Pb、Th、U 含量较低 "Mn、Co、Mo、Sn、U 含量与上地壳相近。

3.3 稀土元素成分

在北京大学等离子体质谱分析实验室对蛇纹石玉 及其围岩大理岩样品进行了稀土元素对比分析 结果见 表 13 球粒陨石标准化的稀土元素配分模式图如图 6 所 示。由图中可见 围岩大理岩的稀土元素配分图与蛇纹 石的稀土元素配分图非常相似 均为陡右倾型 其中轻 稀土元素呈缓倾斜型 重稀土元素为平坦型 轻重稀土 元素分异明显 具有稀土元素总量较低、富集轻稀土元 素、&Eu 负异常的特点。这表明蛇纹石的稀土元素来源 于围岩大理岩 继承了大理岩稀土元素配分特征。

表 13 小寺沟蛇纹石玉的稀土元素组成

 $w_{\rm B}/10^{-6}$

		Table 13	REE composition of serpentine in Xiaosigou						
编号	A-2	B-1	C-1	D-1	E-2	F-1	G-1(大理岩)		
La	1.46	6.67	1.78	3.21	1.71	1.41	0.786		
Ce	2.78	11.58	3.73	6.30	3.02	2.72	1.506		
Pr	0.23	0.89	0.41	0.55	0.29	0.28	0.155		
Nd	0.51	2.44	1.45	1.85	0.97	0.92	0.517		
Sm	0.09	0.40	0.35	0.43	0.23	0.22	0.109		
Eu	0.02	0.12	0.06	0.11	0.05	0.06	0.012		
Gd	0.07	0.38	0.21	0.27	0.26	0.20	0.066		
Tb	0.01	0.05	0.03	0.03	0.04	0.03	0.009		
Dy	0.06	0.29	0.16	0.22	0.26	0.19	0.046		
Ho	0.01	0.06	0.03	0.05	0.06	0.05	0.008		
Er	0.03	0.15	0.08	0.13	0.19	0.15	0.020		
Tm	0.005	0.02	0.01	0.02	0.03	0.03	0.003		
Yb	0.04	0.13	0.07	0.12	0.21	0.21	0.021		
Lu	0.01	0.02	0.01	0.02	0.03	0.03	0.003		
ΣREE	5.33	23.20	8.38	> 13.31	7.35	6.50	3.261		
LREE/HREE	21.66	20.09	12.97	14.48	5.81	6.30	15.528		
δEu	0.74	0.93	0.63	0.92	0.62	0.86	0.40		

配分模式图

Fig. 6 Chondrite-normalized REE patterns of serpentine jade in Xiaosigou

4 蛇纹石玉的宝石学特征

小寺沟蛇纹石玉的颜色以黄绿色、黑色为主,呈

块状、条带状、斑杂状构造,结构致密,偏光显微镜下 具叶片状、鳞片状变晶结构。蜡状光泽,微透明至不 透明,折射率为1.56(点测)左右。用标准矿物刻划 法粗略测得其摩氏硬度为4.0~5.0,断口平坦或参 差状,用静水称重法测得密度为2.47~2.60 g/cm³。 小寺沟蛇纹石玉颜色丰富,花纹美丽,加工时可根据 原石的特点因材施宜,设计造型,具有良好的市场开 发价值。

5 矿床成因

蛇纹石是一种与热液交代作用有关的蚀变矿物。蛇纹石质玉有两种地质产状,一种是由富镁碳酸盐岩蚀变而成,另一种是超基性岩强烈蛇纹石化 自变质作用形成的。小寺沟蛇纹石矿床为富镁碳酸盐岩蚀变而成,其形成有两种途径:一是伴随褶皱隆 起而来的酸性岩浆活动,提供富含 SiO₂ 的热液,沿 层间及构造有利部位流动,镁质碳酸盐岩在接触变 质作用条件下,早期形成透辉石砂卡岩,晚期形成蛇 纹石。其化学反应式如式①、②所示;二是镁质碳酸 盐岩也可受到交代蚀变,形成蛇纹石,其化学反应式 如式③所示。 CaMg(CO₃)₂+2 SiO₂=CaMgSi₂O₆+2 CO₂ ① 白云石 透辉石 3 CaMg[Si₂O₆]+2 H₂O=Mg₃[Si₂O₅【OH)₄+ 透辉石 蛇纹石 4 SiO₂+3 CaO ② 3 CaMg(CO₃)₂+2 SiO₂+2 H₂O=Mg₆[Si₄O₁₀【OH)₈ 白云石 蛇纹石

 $+ 6 C_{a}CO_{3} + 6 CO_{2}$ (3)

6 结论

综上所述,小寺沟的蛇纹石玉矿床由富镁碳酸 盐岩蚀变而成,具有多阶段、多期次的特点。小寺沟 蛇纹石玉的主要矿物成分为利蛇纹石,次要矿物成 分有方解石、白云石、透辉石、金云母、磁铁矿、黄铁 矿等。蛇纹石玉的稀土元素来源于围岩大理岩,其 球粒陨石标准化配分图与其围岩大理岩的稀土配分 图非常相似,均为陡右倾型,具有稀土元素总量较 低、富集轻稀土元素、具 ôEu 负异常的特点。

References

Han Xiuli, Chang Quanning and Yin Lijun. 1998. Study on the relationship of the serpentinization altered rocks and the ineralization of copper in Cu-Mo deposition Xiaosigou , Hebel J]. Journal of Hebei Institute of Technology , $20(2):73 \sim 76($ in Chinese).

- Liu Gang and Su Shanli. 1986. XRD spectrum identification characteristics and differences of Serpentine[J]. China Non-metallic Mining Industry Herald ,(02)(in Chinese).
- Liu Yangjie, Lin Xiaoming, Zhang Ting, et al. 2009. A mineralogical study on the Serpentine in Nanzheng, Hanzhong, Shannxi[J]. Journal of NorthwestUniversity (Natural Science Edition), 39(6): 1032~1036(in Chinese).
- Wang Pu , Pan Zhaolu , Weng lingbao , et al . 1987. Systematic Mineralogy[M]. Beijing : Geological Publishing House(in Chinese).
- Wang Shiqi , Zhao Chaohong , Yu Guang , et al. 2007. Xiuyan Jades in China M]. Beijing : Science Press (in Chinese).
- Zhao Zhenhua. 1997. Geochemistry of Trace Element[M]. Beijing : Science Press, 222~223(in Chinese).

附中文参考文献

- 韩秀丽,常全明,尹力军.1998.河北小寺沟铜钼矿床蛇纹石化蚀变 岩及铜矿化关系浅析[J].河北理工学院学报,20(2):73~76.
- 刘 刚,苏山立,1986.蛇纹石族X射线衍射谱鉴定特征及区别J] 中国非金属矿工业导刊,(02).
- 刘养杰 林晓明 涨 婷 等. 2009. 陕西汉中南郑蛇纹石玉的矿物学 研究 J]. 西北大学学报(自然科学版), 39(6):1032~1036.
- 王 濮,潘兆橹,翁玲宝,等. 1987. 系统矿物学[M]. 北京:地质出版社, 374~404.
- 王时麒,赵朝洪,于 洸,等. 2007. 中国岫岩玉[M]. 北京:科学出版社.
- 赵振华. 1997. 微量元素地球化学原理 M]. 北京:科学出版社, 222 ~223.