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Abstract: The Tongka microcontinent block, situated in the eastern segment of the Bangong-Nujiang suture zone in
the central Tibetan Plateau, preserves key evidence of the Early Jurassic tectonic evolution of the Tethyan Ocean
through its metamorphic and magmatic records. Pelitic high-pressure granulites occur as interlayers within dominant
felsic gneisses and are accompanied by leucosomes of varying scales. These granulites are primarily composed of
garnel, kyanite, biotite, K-feldspar, quartz, with minor accounts of plagioclase, muscovite, sillimanite, and ru-
tile. Integrated analyses—petrography, mineral chemistry, geochronology, and phase equilibrium modeling—reveal
a clockwise metamorphic p-T-t path that can be divided into three distinct stages: (1) Near-isobaric heating prograde
metamorphic stage: this stage is characterized by prograde conditions of 0.70~0.88 GPa and 655~680°C, constrained
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by the compositions of garnet cores and associated biotite inclusions; (2) Peak metamorphic stage: the peak mineral
assemblage—garnet + kyanite + biotite + K-feldspar + quartz + rutile + melt + plagioclase—formed under condi-
tions of 0.98 ~ 1. 06 GPa and 770 ~790°C, as indicated by phase stability fields and the compositions of garnet
mantles and matrix biotite. Zircon U-Pb dating yields a metamorphic age of 175 Ma, representing the timing of
high-pressure granulite-facies metamorphism; (3 Cooling and decompression retrograde stage: The retrograde as-
semblage of biotite + plagioclase + sillimanite + muscovite reflects post-peak conditions of 0. 32 ~0. 68 GPa and 600
~725%C. This clockwise p-T-t path reflects crustal thickening associated with the collision between the Tongka mi-
crocontinent block and the Qiangtang terrane. The near-isobaric heating stage likely records prolonged thermal input
from upwelling asthenosphere into the thickened lower crust of the microcontinent.
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Fig. 1 Simplified geological map of the Bangong-Nujiang suture zone (a) and geological framework of the Basu

microcontinental (b) ( modified from Wang Donghing et al. , 2021)
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BNSZ—Bangong-Nujiang suture zone; JSSZ—Jinsha suture zone; LSSZ—Longmu Co-Shuanghu suture zone; 1TSZ—Indus-Tsangpo suture zone

MEE AR 2 SMCA o F 2R R (X RS, 2024)
IO T Z AR INE A, B8 AR5 o 3 eI
I 218 Ma(5R ALVE S, 2009) , 2 K E 59K
FF LA 187~ 183 Ma, EEIE MMM A MK A .
B n N A FIRHR AL 545 55 (ARG, 20195 XK
520215 XA, 2024) 5 WA A% 0 5t
FEMEA A B A A L rf IR (0 0 K ik, AR 43 5]

A 175 Ma Fl 164 Ma ( 25/, 2016; Wang et al. |
2016) , M GIR AW AT S iR
fARAE R RS RS HEA RS B
A5 BHRL A R T HCE A s AR SR AL,
TEHEHER A P RAHES G U-Ph 4% 267+8 Ma, B A,
HJE A mae— B ( Farads, 2013) , iR %
(2021) 3B THRF ISR A WA Ll AN



4 A

i W

A
= % Gk

545 4%

A1 Ar-Ar FEAERE S 161 Ma, 5 T 75 I 4 511 e 1
ERBEARACH Y, N\ T e SR IR A B ik
i THCE B Rb S RE B AR, IR 2 A R
o KEE KA AP (AL eAE, 2013)

] R f i e S 2L FE R 20 0E R iR K AR A
MR 20 5 K e N (22445, 2008; Li et al.
2017; Chen et al. , 2018; ] 5%, 2019; Peng
et al. , 2020) , flbfiHe A 5 /0 & o oo AR
KA A FIE 7o RS (faTHEF-45 ) 2012a; Liu et al. |
2021) . % 5 M BR A AL 8% FR 0 5 B AT A (] 1S
4, 2012b) , EEHARVIRUA AR Kl K A 4
B, TN G HRGE 7 B XA H A U-Pb 1Y 38
JUAEIE R 566 + 27 Ma, SR 15 EARRE N A0 A
BRI - B A, R AT ) o LA
AT AR, AT 2= R T R R b B AR
F 8 A i 20 b 2 R0 A 57 AR, A HOR AT
T = PR X5 EARBER) — Mg A 25 (B4
e4E ) 2021) , REA KR EREME R IKEE KR
O THCA I R B AR TP S R B MR IR (04
mnCE KIS IC X R, Rl ol WA A e, |
JED A 1 b 2 e KUTRRARE I 510 Ma (T & 4
20215 FHEAE ) 2023), kA B MR A A
U-Pb 4Ei#5 8 338 Ma( A 4 2021) , Sk A Hegh:
AWM 331 Ma(fE 85, 2022) , KA BT &
A RS A RGeS DR E 2K )
b (E7E5,1998) , K iz b 2 1 TR IR 4 )
R R FE R Al — A i I IR A
T 2 a8 LA 8 S5 35 114 e Bl e, 7 0[] < A
Pe(Frig s, 2023), M-RAiREA% LT =8
G—UaES, N HESE TN 113 Ma, ARk
FE ORI | LR 18 0 o ok W5 32 Sy R JE R AR
URE R AL 5% M AR, DRI ) 7 7 15 b A 5 5 3 A
AR i e A AE R R ( Yin et al. , 2024)

[ ok ki e . B K TG AR R B AE B A A
JER A Ky 187 ~ 171 Ma (Li et al. , 2017; Chen
et al. , 2018; Peng et al. , 2020) , fE < BiA A FEE N
I BIZE R (Li et al. , 2017; Peng et al. , 2020) , 4
H/0 S BIE 2 (Chen et al. , 2018) ., A2 &N
R I BT R R T e 55 96 35 b A4 Al 4 5
P (Liet al. , 2017) WA FH NN —E 5N
B, TE T PR - VL B b R i A e
(Chen et al. , 2018) ,{H 55 hb—2b22F A N X EAE X
POV LT iR S 7] f Bl B B R 17 FE 4 ( Peng

et al. , 2020) , A %35 1 [RGB IR0 L T T
RS ISR S, R A (197~ 191 Ma)
DB GMIE A T R A 5 A IR 5 (177
~175 Ma) 2 AEHAZAZF KA A X P A K
FARRE T BIE M AR PR 2 7 T K RS
A B R S, T RE S A N vp B BE A - T
FESCIAR R BT e (Xu et al. , 2021)

[ = ki B P %) A8 i = P R 0 T R A
B, A ARG B A RHE 7 BRE B R s R
SRR BB 5 B K AE B o A BRAL K AE R e FAE R AE
B IR 4 (25445 20085 Li et al. , 2017; FE#ITE
4, 2019) , KA RS B 45 S AR IR R 507 ~ 492 Ma
(ZEA45 2008 Liet al. , 2017; FE@I 4, 2019)
Li 45(2017) B AL A R g A 2R 1T 5Ok 2 TS o
YERI(173 Ma) , PR R A5 2007 F B ka i,
R RRA W2 L BRF € (2019) fREGETR A A
Wk T RARBH R AR (178 ~ 176 Ma) , U
FZ A 1.0~1.2 GPa fi1 770~810°C , & KA
AR o AR R 03 ) A s e A 37 R o B f
Jr WK (Zhang et al. , 2008 ; 5K J7F45, 2010) , Xu
S5 (2021) BRE TASMER A2 D1 T 180 Ma 1IN A
AH/ WA AR A TR T, VR 0 v T Rk 7t At e )2
ARF=F R R R, JR 0 T U i R RO 2 RT3 A AR
HHERA,

2 ik

WPk B3 R 3 A A b BT 2 B
HAIE ST TR 58 A, SR B AR JEOL 2 m) A 7=
) JXA-8100 %Y H &t i 47 MK, 12 17 % 4
15 kV JINGg L e, 5 nA S5 380 HLJE , WA (RN 5 S5 A9 114
BFIRIY R 10 s, IRBER N 5 pm, R A KIRFIA K
PRUERE S AT I SR A ZAF SEITRCIE

S E R ITR A I T AR [ 5 H 5T
SFHGMA O TE S, R T HRAT AL () 42 5 Hh Bk
e BT W K2 500 g A B b B8 Ry A 5 47 U
K, &fFERITEREMY G ERH X LI
{L(XRF) (PW4400) I X, W 8 77 % 4K 38 GB/T
14506. 28-2010 AR fEHAT, HATHE LT 5%, &%
kG oK & (H,07) MK U7 4K 45 GB/T 14506. 2-
2010 FRUEPAT , S HTRE BEOL T 5%

B A TR RO UG AE AL 5t rh 2 BB
EBRAF5E, #5417 LA-ICP-MS U-Pb Rl & & 4F



551

FAEARAE . AR ] IS folc i e 8 5 g TR R 922 A7 P b i i 5

5t e 2 B e v b B2 (R ) b S R
W7 o8 U5 58 AN S0 o8 i, A WO AR H
Elan6100DRC #! ICP-MS {{#% 5 Geolas200M E4£ 41
193 nm ArF #5306 R1 0l R 58 58 1, WOt R BE L
£ 24 wm, 2K He VB3 o ot i 20, b e gl A
91500 fEM 4R, Si 4E b NFR, >Rk H ICPMSData-
Cal(V10. 8) HKAFXT [RI v 28 HUAE Al i 7T 28 A0 F
TR B PR ERBA T AR RAL B 5L D Hu 45
(2011) 1 Liu %§(2010) , & F1E AL 65 mACTE3 4
BT ECR H TsoplotR #2558 ( Vermeesch, 2018)

3 AASFERHE

HEAD =AY R = =2 N W A il o
Hh /D BOHT B R Sk AT DL R A R A R B
CHNTOIRT KB FTIR AR (] 2a)  ORAF T R AL
MBI G , 2280 8 32 e I s R AR S A R R
st ESOM b E, ARRBEFEN 7 T8 5
ef (PRSI ey F R 2 A S TR e B T MP-1 R MP-3
FERTE TR A A 2 FARAR 2R R 5E
3.1 SHEFHE

Ve b EL A A i ah A R e
B B A AafbERHC A A e Y LA e
AHM(E2), AMTFAZERMEZ N EAE, &
HEaa A B BEARHC A SFE AR, g 4
KL BEAURH AT B (18 2b 2¢) o OB df AT
B BE UL R A R A g S5l 48 8 3 0 R B (A
2d 2e) , RE TG WA G WMbH B TR
o RRURL ] B (& 2d  2) BEE S A i1 2% (K] 26 2¢
2h) HEDI IR AR B RHS A AR 32, 7
TEBIR A A S SR W A TR (B 2d \2f) | BT
N AR AR ) AHEE A MP-3 HF A B RHS A A R
LA ) e S O R N = =] &3 RO 7/ P R
LA 2ER, FE TR A D (E 2g), A
SERIE 7/
3.2 WHIHENS

FEG ) i PR 0 W 1, YR 5T T JRR
KA Th AR A W B R A A, s AR R IX
] X, =0.64~0.73, X,,=0.16~0.25, X, =0.04
~0.11, X, =0.01~0.03, #:fh MP-1 P ATAZE
BE Ak 27 B 4350 T B0 T Y AT R AE
(K 3a) , WRZERRIHER, X, X, Al X, PR er

R TR RS, Xy, W3R ST & e B
RAE , 3X e A0 AR 10 A% 0 — s 8 EL AT A ) 2 o
R REAE T e — 320 B U B 52 B O i IR
A RRAE X AT BE S A AR AR R TP AR T A
130 N2 2 B8] /) Fe-Mg 38 #e 45 2% ( Florence and
Spear, 1991; Spear, 1991; Kohn and Spear, 2000;
Caddick et al. , 2010) , 7] G855 iR 48 A #E F A1 A9 5
it 5 = ( Escuder Viruete et al., 2000; Kohn and
Spear, 2000) . FHLLTI &, FE il MP-3 A3 1 141 722
BEARARTE ¢ 235 10 03 3R (181 3b) , WX AR B 34
B8, X,,, X, H BURE BT 5 R T X,
A AR A R 2 SRR MP-1 P A 1 0
BRI S A R B AR AR AR ), PR T LA R R
ffr MP-1 A AR 7 A1 B RN ity MP-3 P A 1A
B ornlic s 7B N TR AL BB,

e I e HERRRE v 7 8 2 B B AR AL A6 22 1
Ay (I 4a) (HAE S MP-1 A 88 F A R R 1 2R
R EA AR Ti 55(0.06~0. 12 a. p. f. u. ), ¥
I HE A AR ), 3X 5 A0 A A AR OR A 1E 72 o
JOF A — 20 A LETT R AR MP-1 Hp i 5T R 2 B
5FESh MP-3 R R R A B S A B E Y
Ti (0. 14~0.20 a. p. f. u. ), A AEAC 03I B BE
BB T . TARE A P BB B AL 1k
RO, Ab HN 4~ 15( & 4b) . MP-1 HHRHS A LT
MP-3 & A7 85 1 An {H (MP-1:33 ~35; MP-3:
18~20) .

PRI, ARl A A=A R AR R Ak 2 1, FRAT TN
SRS R il ok T 3 T G i
P IR fl MP-1 4148 5 A1 R B AL A £
TAHR SR+ LA +A 0 T YA S
i MP-1 A3 8T A 1 5B MP-3 A1 1 11 1% 58 S 5k
B AR+ A R S R+ e
SLLAHRE R A BB W HE AT
A A S B E AT SOV A R+
KAa+v&an+Hatk,

4 A U-Pb AR

B U-Pb RS RLFE 2, T R Rk A h
e A2 AT - AR AR, o, Bk K22,
70~150 pm, B ASCEIR BR, 28802364
FROUPER 1 A BH 5 A AR, B 1) 0 3 — i L 7



545 4%

2 RS PR JEH A L B

Fig. 2 Field outcrop and photomicrographs of pelitic high-pressure granulite
a— 8B R B (b TR RBEFTR K b— AR T A BB R a b FHOA ARG A, BB B m i/ A A0
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a—pelitic high-pressure granulite and the “patchy” felsic leucosomes within it; b—garnet porphyroblast includes biotite, plagioclase, quartz and ru-
tile, with a matrix composed of biotite, K-feldspar, quartz and kyanite ( Sample MP-1, plane-polarized light); c—garnet porphyroblast includes
quartz and rutile, with a matrix of biotite, K-feldspar, plagioclase, quartz and kyanite ( Sample MP-3, plane-polarized light) ; d, e—medium-grained
kyanite porphyroblast shows muscovite along their margins ( Samples MP-1/MP-3, plane-polarized light) ; f—fine-grained muscovite and plagioclase
reaction rims developed at the edges and interstices of matrix minerals such as biotite, K-feldspar, kyanite and quartz ( Sample MP-1, cross-polarized
light) ; g—sillimanite and muscovite reaction rims formed at the margins of kyanite ( Sample MP-1; left; plane-polarized light, right: cross-polarized
light) ; h—intergrowth of acicular sillimanite and muscovite ( Sample MP-1, plane-polarized light) ; the lines labelled A—A’ and B—B’ in b and ¢

refer to the locations of the zoning profiles across garnet in Fig. 3; mineral abbreviations are cited from Whitney and Evans(2010)
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Table 1 EPMA analysis of representative minerals in pelitic high-pressure granulite
e MP-1 MP-1 MP-1 MP-3 MP-3 MP-1 MP-1 MP-3 MP-3 MP-1 MP-1 MP-1 MP-3 MP-3
Y Grit-C Git-M  Git-R Git-C Grt-R Bt-I Bt Bt-1 Bt Ms Pl Kfs Pl Kfs

Si0, 37.32  38.10 37.22 38.29 37.34 38.19 37.94 38.38 38.03 47.55 59.67 65.00 65.09 64.84
TiO, 0. 00 0.01 0.04 0.03 0.02 1.14 2.76 2.57 3.48 0.87 0.00 0.03 0. 00 0.02
Al, 0,4 20.69 20.8 21.07 20.36  20.32 19.25 19.45 19.05 18.09 34.05 25.69 18.49 21.77 18.12
Cry 04 0.01 0. 00 0.01 0.02 0.00 0. 04 0.07 0.07 0.03 0. 06 0.00 0. 00 0.00 0. 00
FeO 32.94  31.55 32.80 31.96 33.27 15.88 16.25 16.33 16.79 1.26 0.12 0.04 0.07 0.05
MnO 1.10 0.41 0.73 0. 65 1.23 0.00 0.02 0.04 0.03 0.00 0.01 0.00 0.02 0.01
MgO 3.96 6. 04 5.04 6.30 5.46 11.29 9.09 9.92 9.14 0.78 0. 00 0. 00 0.00 0. 00
Ca0 2.99 2.45 2.29 1.86 1.85 0.02 0.00 0.02 0. 00 0.02 7.02 0.08 3.83 0.04
Na, O 0. 00 0.04 0.01 0.00 0.02 0.22 0.13 0.13 0.22 0.42 7.22 1.23 8.85 1.39
K,0 0. 00 0.01 0.00 0.00 0.02 9.21 9.71 9.62 9.59 10. 09 0.22 14.85 0.25 15.05
Total 99.01  99.45 99.20 99.46 99.52 95.24 95.40 96.11 95.39 95.08 99.96 99.71 99.88 99.52

(0] 12 12 12 12 12 11 11 11 11 11 8 8 8 8
Si 3.01 3.01 2.97 3.03 2.98 2.83 2.82 2.83 2.84 3.16 2.66 3.00 2.87 3.00
Ti 0.00 0.00 0.00 0.00 0.00 0. 06 0.16 0.14 0.20 0.04 0.00 0.00 0.00 0.00
Al 1.97 1.95 1.99 1.90 1.91 1.68 1.71 1.66 1.59 2.66 1.35 1.01 1.13 0.99
Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe®* 0.02 0.03 0. 06 0.03 0.14 0.00 0.00 0.00 0.00 0. 00 0.01 0.00 0.00 0.00
Fe 2.20 2.06 2.13 2.09 2.08 0.99 1.01 1.01 1.05 0.07 0. 00 0. 00 0.00 0. 00
Mn 0.08 0.03 0.05 0.04 0.08 0.00 0. 00 0.00 0. 00 0.00 0.00 0. 00 0.00 0. 00
Mg 0.48 0.71 0. 60 0.74 0. 65 1.25 1.01 1.09 1.02 0.08 0.00 0.00 0.00 0.00
Ca 0.26 0.21 0.20 0.16 0.16 0.00 0. 00 0.00 0.00 0.00 0.34 0.00 0.18 0.00
Na 0. 00 0.01 0.00 0.00 0.00 0.03 0.02 0.02 0.03 0. 05 0.62 0.11 0.76 0.13
K 0.00 0.00 0.00 0.00 0.00 0.87 0.92 0.91 0.91 0.85 0.01 0.87 0.01 0.89
X(phase) 0.16 0.24 0.20 0.25 0.22 0.56 0.50 0.52 0.49 0.35 0.11 0.19 0.12

C—HE; M—BB; Rl 1—fH; X(Gr) = Mg/ (Mg+Fe?* +Mn+Ca) ; X(Bt)= Mg/( Mg+Fe> ) ; X(Pl)= Ca/( Ca+Na+K) ; X(Kfs)=
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Fig. 3 Compositional zoning profiles of garnet in pelitic high-pressure granulite
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Fig. 4 The compositions of biotite and feldspar from pelitic high-pressure granulite
K2 RESERAETHA U-Pb EFER
Table 2 Zircon U-Pb geochronological result for pelitic high-pressure granulite
wy/107° [FIA3 2 LB A/ Ma
R dh i or Th/U tho
Th U 207 Pb/235U +1lo 206 P]'/ZBSU +1o 2()7Pb/235 U +lo 206 Pb/Z'ﬁSU 1o
MP-1@ 01 45.2 1426 0.03 0.180 2 0.006 0 0.027 5 0.0004 0.4058 168.3 5.2 174.8 2.3
MP-1@ 02 18.8 2 134 0.01 0.180 2 0.005 8 0.027 4 0.0004 0.4104 168.2 5.0 174.4 2.3
MP-1@ 03 28.0 1142 0.02 0.1890 0.006 & 0.027 4 0.0004 0.408 7 175.8 5.8 174.5 2.5
MP-1@ 04 14.9 1481 0.01 0.180 3 0.005 9 0.027 4 0.0004 0.4402 168.3 5.0 174.3 2.5
MP-1@ 05 50.6 1237 0.04 0.1870  0.007 0 0.027 8 0.0004 0.404 2 174. 1 6.0 176.8 2.7
MP-1@ 06 29.4 1165 0.03 0.1890 0.007 2 0.027 4 0.0004 0.357 4 175.8 6.1 174.3 2.3
MP-1@ 07 40.8 1 357 0.03 0.196 3 0.007 3 0.027 5 0.0004 0.4327 182.0 6.2 174.7 2.8
MP-1@ 08 8.6 1308 0.01 0.189 2 0.006 8 0.027 5 0.0004 0.4416 175.9 5.8 175.0 2.7
MP-1@ 09 35.3 1199 0.03 0.186 6 0.006 4 0.027 5 0.0004 0.4479 173.7 5.4 174.9 2.6
MP-3@ 01 36.2 1337 0.03 0.199 8 0.006 5 0.027 6 0.0004 0.4123 185.0 5.5 175.7 2.3
MP-3@ 02 24.8 980 0.03 0.200 1 0.009 1 0.027 5 0.0004 0.346 0 185.2 7.7 174.7 2.7
MP-3@ 03 30.3 1206 0.03 0.201 4 0.008 8 0.027 6 0.0005 0.3960 186.3 7.4 175.5 3.0
MP-3@04  38.9 1483 0.03 0.1920  0.007 5 0.027 6 0.0005 0.448 8 178.4 6.4 175.6 3.1
MP-3@ 05 39.6 1 400 0.03 0.196 9 0.007 0 0.027 6 0.0004 0.4540 182.5 6.0 175.7 2.8
MP-3@ 06 32.1 1245 0.03 0.194 2 0.006 5 0.027 7 0.0004 0.4665 180.2 5.6 175.9 2.7
MP-3@ 07 33.1 1345 0.02 0.198 8 0.007 1 0.027 6 0.0004 0.4528 184.1 6.0 175.2 2.8
MP-3@ 08 49.4 1 826 0.03 0.200 6 0.006 9 0.027 6 0.0004 0.443 4 185.6 5.8 175.3 2.6
TS5 IIBC A RHE (4] 6e 6f) o et al., 1998) 715, N &R — Eik #7288 12k

5 APFATRLA

FATEEFEAE MnNCKFMASHTO[ MnO-Na, 0-Ca0-

FeO,,,-Mg0-Al,0,-Si0,-H,0-Ti0,-0 (Fe,0,) ] 1k %
T HEAT AP BB A X RO IR R R
SE YR AR 2 (White et al. , 2014b) , I HREALIR
U s ASEALL I T 5 e R 5 B W) 2 N ) k2

Aro TR A Al 0,0, ) I R R 2020 4
12 A ¥ 1 THERMOCALC %/ 3. 50 fiRZS ( Powell

Holland F1 Powell (2011) % 3% i) B8 i ds62. txt, [#]
PARRRLR IS F TR B AR R AR ( White et al.
2014a) , Horb R A FER R A R B 9 4 A A Y
(Holland et al. , 2022) ,

S 4 5 B 43 B K 3 MnNCKFMASHTO 4
F,H o URERMEREFERE(E4), FIE
iﬂaﬁﬁi%tﬁ Fe’ B it Xl p-T HLE0 1 15T B9 AR G R 28

BA AR EE A0 ( Rebay et al. , 2010; White
2014a; , 2016) , %HKIEJKJTE&E’\J
73 A FH AT g B AN [ 8 S Ak S 4544 ( Groppo and

et al. , Green et al.
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Fig. 5 Cathodoluminescence images of zircon from pelitic high-pressure granulite, showing locations of the analyzed
spots and relevant ages
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Table 3 Zircon REE concentrations in pelitic high-pressure granulite
FEfEAL La Ce Pr Nd Sm Eu Gd Th Dy Ho Er Tm Yb Lu
MP-1@ 01 0.007 1.805 0.047 1.197  4.861 1. 895 25.1 5.189  27.96  4.453 10. 02 1.399 11.43 1.570
MP-1@02 0.039 0.607 0.022 0.358 1. 965 1. 146 12.16  3.587 29.49  5.577 15.87 2.562 25.62 3.743
MP-1@ 03 0. 000 1.215 0.039 0.616 1.795 0.703  9.429 1.992 11.85 1.766  4.541 0.626 5.684 0.668
MP-1@04 0.000 0.571 0.030 0.481 1.245 0.622 10.26  3.611 30.02 6.484 22.78 3.812 39.65 6.150
MP-1@ 05 0.000 1.786  0.039 1.179  5.437 1.796  24.01 4.276  26.18 3.742  8.803 1. 408 11.42 1.341
MP-1@ 06 0.000 0.991 0.018  0.567 1.302 0.738 10.29  2.033 12.70  2.021 4.748 0.725 6.808 0.739
MP-1@ 07 0.007 1.363 0.034 0.707 2.327 0.686 9.513 1. 728 10.97 1.692 4.361 0.720 6.296 0.756
MP-1@08 0.000 0.272 0.017 0.053 0.901 0.502 7.242 2.500 22.93 5.349 17.89 3.124  32.72 4.807
MP-1@ 09 0.000 1.188 0.030 0.805 2.357 0.857 11.34 2.123 13. 61 2.076  5.713  0.810 6.935 1.033
MP-3@01 0.010 0.936 0.030 0.486 2.206 1.078 10.37  2.770 20.74 4.632 14.72  2.577 20.78  2.632
MP-3@02 0.016 0.728 0.023 0.136 1.494 0.672 6.736 1.899 15.95 4.283 13.88 2.294 22.21 2.975
MP-3@03 0.000 0.765 0.006 0.252 1.309 0.493 8.328 2.061 14.80 3.611 12.05 1.876  15.27 2.043
MP-3@04 0.000 0.788 0.013 0.595 2.595 1.070  9.710  2.409 17.31 3.404 10.25 1. 661 14.59 1.784
MP-3@05 0.000 0.976  0.047 1.045 4.160 1.502 18.38 4.085 34.62 7.951 24.11 3.855 32.07  3.858
MP-3@06 0.000 0.971 0.025 0.378 1.764  0.767  9.311 2.096 16.46 3.639 11.50 1.998 15.68 1.679
MP-3@ 07 0.022 1. 081 0.022  0.262 1.482  0.591 8.046  2.029 16.63  3.724 12.00 1.928 16.90 2.056
MP-3@08 0.000 0.968 0.098 1.196  2.607 1. 085 12.89  3.307 21.38 4.922 14.49 2.102 21.05 2.516
x4 RRABEFRANEESERSD
Table 4 Bulk-rock composition of pelitic high-pressure granulite
S A T (wy/ %)
i LOI Si0, Al, 0, CaO MgO FeO K,0 Na, O TiO, MnO P,04 H20+
MP-1 1.07 54.60 23.03 0.48 3.31 9.85 5.61 0.44 1. 06 0.09 0.09 1.76
MP-3 0.97 61.37 18.57 0. 60 2.82 8.48 4.70 1.21 0.93 0.12 0.04 1.48
AHTAE A AL T A2 A (g %)
Xof 1oz P4 H,0 Si0, AL, 0, Ca0 MgO FeO K,0 Na, 0 Tio, MnO 0 Total
&l 7a 6.407 59. 549 14. 800 0.422 5.380 8.083 3.902 0. 465 0. 869 0.083 0.040  100. 000
&l 7a 6.333 58. 858 14. 629 0.417 5.318 7.989 3.857 0. 460 0. 859 0. 082 1. 198 100. 000
&l 7b 5.288 65. 688 11.712 0. 628 4.499 6. 829 3.209 1.255 0.749 0. 109 0.034 100. 000
[l 7b 5.236 65. 045 11.598 0. 621 4.455 6.762 3.177 1.243 0.741 0. 108 1.014 100. 000
[l 8a.8b 6.399 59.476 14.782 0.422 5.374 8.073 3.897 0. 465 0. 868 0.083 0.161 100. 000
€l 8¢ .8d 5.280 65.598 11. 696 0. 627 4.493 6. 820 3.204 1.254 0.748 0. 109 0.171 100. 000
[l 8e .8f 9.280 59.281 13.768 0.436 4.652 7. 004 3.765 0. 854 0.749 0.072 0.139 100. 000

Castelli, 2010; Evans, 2012), B b, A< c 241 7
p-Fe™ /Fe, AU (& 7) b 5 2 1E I i 1k
BBy Fe' i, B 7 Won TH WA A 5S4
P SRR, S A BRI G WA 6 A
FA+ERA+RBR o+ R A+ AR+ S 40A e RH
AT Fe™ Fr i ALY X FRE (Fe'™ /Fe,, < 0.06)
J T R Y AL SRR RS AE p-T A5 1 B AR e
FETE, AR EREA MP-1 F1 MP-3 1Y Fe**/Fe,, {H4)
B4 0.04 F10.05( 7)), AAERRFH H,0 &
SKHSC R 4 10" & & Ry W ik &K &
SEEVFL, [l 7a B Th R Y A A2 A o AR SR
MP-1 il MP-3 ¥ i Fe’*/Fe,, % T 0. 01 F10. 30

A RA A4y s T 8a 8b FIIE 8c . 8d X I 4 % i
S35 AR FE S MP-1 FT MP-3 AR ifEAL 5 (1 520 42
HIGr; B 8e 8 X RLA A IR E AL MP-1 il a] 2525
TSRS B A B ) o

HY T 5T s BB A A 1 R s il 7 AR Y
ARIR AT REC X B B a A IR R Z 0, B AR 4 5
D42 3SR ) A 79 T RT3 | R R ASE 40 3 0 D)
W B AR A8 T B [ AH £k B B ny A2 B i AR T AR
(Indares et al. , 2008; Groppo and Castelli, 2010),
DRI, AR SCRE 24 139 B AR ZIRE i MP-1 14520
A O AR LA A A T LS G PR
U S5t e He JRORE A 14 34 78 B e Ak ik A%, PR A0 i T H AR
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Fig. 8 The p-T pseudosections of pelitic high-pressure granulite in the system MnNCKFMASHTO
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a, b—pseudosections calculated from the analyzed bulk-rock compositions of sample MP-1; ¢, d—pseudosections calculated from the analyzed bulk-

rock compositions of sample MP-3; e, f—pseudosections calculated from the effective bulk-rock composition of sample MP-1 after reintegration of the
lost melt; the bulk-rock compositions are provided in Table 4; the dashed curves labeled g18 and b18 in b, d, and f correspond to the isopleths of
garnet Xy, value and biotite Ti content (a. p.f.u. ), respectively; the solid lines with arrows indicate the inferred p-T' paths
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Fig. 9  Summary of the inferred p-T-¢ path for the pelitic
high-pressure granulite in the Tongka microcontinental block

and comparison with those reconstructed for the high-grade

metamorphic rocks from the studied area (metamorphic facies
boundaries are after Brown, 2009 )
Z08—HAMEA 1Y) p-T B ( Zhang et al. , 2008) ; Z10—FEE 75 JE R
K p-T BT (5K TTFAE, 2010) 5 GS—ER A A M1, BS—HE R &
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708—p-T paths of eclogite ( Zhang et al. , 2008) ; Z10—p-T paths of
high-pressure granulite ( Zhang Wanping et al. , 2010) ; GS—green-
schist facies; BS—Dblueschist facies; A—amphibolite facies; G—gra-
nulite facies; HPG—high-pressure granulite facies; AEE—amphibole-

epidote eclogite facies

PR AT R Eu JTER I FEZEMAF A4, PR X LA
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By i, 31 e T L Vi A2 545 A T BETE RS BT B B
ZIEIBTBOE L, AR, B GBS Ze KR 1A
BBl 45 R R WY, B 0 HOBETE M AR 45 ot A K
(Kelsey and Powell, 2011; Yakymchuk and Brown,
2014) , U FRATTIN 728 B 45 A7 10 st I 4R 8% 175 Ma
SERTREACER 18 U s T RO I S B Be g AR, L
SE(2017) 4GB 1A A L=~ By (ZD4-5-2)
BETE Ar-Ar PRI 165 £ 2 Ma, 8 T B Ar-
Ar 1K Z ) 355 A IR B2 R 350 £30°C ( Stiibner et al. |
2017) , HBLFRATIN A 165 Ma A0 T F AR 48 i 5]
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2% A MR AE RS (Xu et al. , 2021) , A P b =M FE 2 — 28T AE IR =

6.2 RE-FRFERMMAIEEN

] i e B 2 JE R0 0F R RRE AR S 4242
NEM R (ZEA %, 2008; Li et al., 2017; Chen
et al. , 2018; FEEI S, 2019; Peng et al. , 2020) ,
IEORAE T i 0y B e AR 5 3R T Bl S (el it
4 2012a; Liu et al., 2021) . FrU45E (2023 ) X
Ti] 5 Fole oty B 000 %) 7 7 40 3 2 TF 2 T B 4 BF
5T, AR XS i 2 A DT R AR 1 A 9 i 20— g
R R B B B 4R R 43 75 B AR AR AN 32 2
HERARDUBUE KA R AR X A 2
AAE I A e RN (S 45, 2013) , A 1H
BNV i A Y AV v el il S 3 4 R | e B i
Z Al e s iR A rh i 8 X R b R A A R
E S s HEA T # S ZR0A (N-MORB) Fli3 i
FIRCE AT, 2540 5 25 (2021) A R HIE BT B2
PG A 5k bt o JNE e HE A T 3RS
BE47 U-Pb 4E #2678 Ma, 454 HiJZ N 4= 4
FEATFRS B A A e S TR 2% 2 i B AR A el —
—BL (EA%, 2013), B, ROTIA il &
M = B 1, [R] R SR B RN 5 T AR B A O =2 [ A I
N T A MG (K 10a) . teAM, T8 bt B oy O
F7 T AR LA A VR 7 (197 ~191 Ma) , H
Hiu BR A 22 R EAE S s HOE BT 550 bV A G

H A

a  Mp=#rk (>200 Ma)

c kPt (170~165 Ma)

EO DO

K10 [a) i e — B i — b R 2 T4 i Al s 1]
Fig. 10 Schematic diagram illustrating the tectonic evolution
of the Tongka microcontinent block during the Late Triassic-
Middle Jurassic period
EO—f plg iR ; DO— T FIEatiRIes s Iy—3 EAHE;
Tk— Rl GblHR ; # 0 ff B—Je B PR R
EO—Exue ophiolite; DO—Dingging ophiolite; Jy—Jiayuqiao group;
Tk—Tongka microcontinental block; yellow star—pelitic high-pressure

granulite

e m AU b 2 A R e N (B 10a) . T
T ME SR fic 8 W AR R HE A 5 I 9 218 Ma
(SR ELALPE S, 2009) , 2 BN T[] R ol fidi B Fn 98
B2 (BN AL AT I T e & A T A i 4R
(I 10a) . FRMAEZid 5% TR R ek
(190~ 175 Ma) , K5 57 Fr JfR A L U8 it J 5 AR
KARED T RERP A TAERH (Li et al. , 2017;
Mk K, 2019; Xu et al., 2021) ., Zhang %5 (2008)
NN R M R A AR i (3.5 ~ 4.5 GPa, 930 ~
1 050°C) AR AFERAR D (195~ 169 Ma) , ALK
A5 IO 1 S SRR 5 R 0 A8 Tt Pof AR L 7 AR 2 4
W, BEAN AR SCHRE U8 T i R RS Ak O 74
(2010) 38 1) F 4 15 FERRRL A #R 28 D 1 B £ 1Y)
p-T-t AL (1 9) , B[] R Gl e e 5 92 I b
PRREE e & A R s 57 IR S E8Ub e s (| 10b), T
Hwsta O T A R b s 58 s e Z ), £ &
187~ 183 Ma By A9 A (AR, 2019; XK
45020215 XWAZREE ) 2024) , i AF R O ME K 5 45 i
A 175 Ma( Wang et al. , 2016) , 325 W4~ i e
FERLR RIS UL R B AR TR 25 (177
~175 Ma) iy ML ER Ak AR AE B HoA ORI T 32 31
A 3 A A ) R RS A s il (X et al. , 2021)
8 B ok S AT -5 AR SR R v R R A 1 1] A
T AR — 2, AT U 2 i e OB 25 26 S T M
FEURPBESZ BT WA R A I, AT e SR T 4
JEF- A 28 [T p-T WAL HGE (B 9) . miT A HRE 1Y
A AR 2 B /D m] 5 B b BR 1k 2 IE B ( Zhang
et al. , 2008) , FRATHE L W 5 T 4, IR L it G
RSB bihl E e uy N il S 2 S0 A= DN A
LORB I T RUFN S BUAE 5 0T 2 A1, X T8 5 A A
B A BE 1Y) 5 I H A M R A A RRAE  (H L
BEAIY eHE(0) 1 (=18.9~ =5.7) SHIEEHLAFI IE 58
AR 5 S0 5 eHE(¢) {l (Li et al. , 2017; Chen
et al. , 2018; Peng et al. , 2020) BB KES il
FRATIN A X L AL 5 T 1 T8 A] g5 il 4 [ b
BUImE T Ao F A 5%, 13 A0 B B T R S AR
PRAL T E AP ARIE RIS 43 B VR (1] 10b)
HIAMGE =R AR o B Ar-Ar 4R} 165 Ma
RET F A B B2 B A AR (Li et al.
2017) , P UL IRA T R [ R i i Hefe rp AR 22 i (170 ~
165 Ma) O & H 8 T 3R (&1 10c) . Heoh, M2z ie

SRAE TR XRAE T T VR RS | BAT 4%
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WANAGHT YA S, L MINA Ar-Ar SRR
161+2 Ma, {HZ H FAINAH Y& FERAL, ol g
AT 00 2R e M 0 A BRI ARG, DR 45 SR AN I =
RESEE S B T P AR, DR TR AT 2 e 4
2% A 1l Be 76 b ok 2t 0 8% = O SR A B
(& 10¢)

(1) RIS AT B Py 08 ot s TR JRRR S 22 103 1 I
By p-T-o TALBE , 5% T RARP L 175 Ma 1 1Y)
4 R JRRORE A AR TR, AR T TR R ARl e 5 92 1
Hb PRI A IS B e R e

(2) VS5 H PR AT 25 s T3 14 167 i A
IR T Rl ARl B 3 i 5 e 2 21 L 6 100 Rl
UESES 91 SR
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