FasE H1 " OA T W % &K Vol. 45, No. 1; 19~45
2026 4F 1 H ACTA PETROLOGICA ET MINERALOGICA Jan. , 2026

Doi: 10.20086/j. cnki. yskw. 2026. 5004

K 3 {1 i 0 iy — i il 4 1T 72 A Bl 55 B BUIE 5 AL F

AR A% &3 X 5 R A IR A AF R A 4l

B EARE Fwig Ap ' EEER L E A& Trr'’
(1. SPENEFFER AR SN AR T WE S LS, ILER HTE  266100; 2. Wil [ERELK S ET FE 3R IR
PEM SR AR SR SL e , INAER S 266237)

W OE . RVEIR A S R 1L R R e AL 5 A SR B (5 | & b A i A BRI i o A A T
A, AR SO S SRR i RIS 2% 55 40 AR - BT LI — 72 o B PN A B B R R B N I e A
PR BRA RN KA T B 1 R4 A A7 27 MRk S50 U-Pb 4R K8 A7 Lu-HE AL R 4 TAE AR HZIX A
KA FE AL R OGP . 45 HER A 22 00T s RS B R B B i JBRS J INH 5 3 60 4 LILEs AT LREES 1fi
TPt HFSEs , 5 MU BIIREA A M BR AL 2 AR AE AL, o bk R fRs SR B e A B i Sl Ak i) 2 s ou H 4k,
SR T RS T R T IR 5 R 4 A S RO T R T iR R B 8 Si0, (AL O il Na,O T I
K,0.,Ca0 Rb/Sr il Th/U Ay AL ) A MU ER AL A4S 1E , 5K BER A RS —30. 85 A U-Pb ARSI s, 20 A
JER A B I 5 T A B LT 470. 9+6. 5 Ma 5 441, 6+3. 0 Ma, H [6)407 4007 B 36 B BRE 55 0 eHE (1) 15K
+6.74~+11. 26, INK ARG A eHE(0) HN+5. 13~ +8. 065 K 5257 7 fR S R A TR BT 441, 623.5 Ma, §547 sHI(¢)
HA+7.24~+12. 27, GEME R KA A3, Z56 0T 3R], P30 3 - 000 1WA 38 -2 Br s e g s T RIS
e E A — AR BT -S4 29470 Ma BUESC I i B, A0 i i VA S A Mg M2 & 26 B i, 51 & T 56 1 ICA
WG, W B T Fe 1 A 5K 50 B B IR 5 24 440 Ma FESSAN op 31 fifi - ol mlf e o R b, s P8 L3, &K
G B A R N AR A T S AR AR A 5 45 it AR b B i 5 AR R B e ot e bR B9 I 5 R AR /K B il
3R A SIS 0% A B Bt i I A A A a1 e U AR i il e 2 5 P R B B e Pl 2 1) TR M 1) B Ak, 2R BH eh
ST i1 21 ity — o it e 40 o R v B SIS T Bl S AV FH B 4 30 Bl b 52 09 B3 5 O ) B IR 3R

KR RREHLST LR KRR b Rli-RlimisE ; WRA A1k, Sedusk

B ZES . P542; P588.3 XERERIRES . A XEHES: 1000-6524(2026)01-0019-27

Reworking and maturation of continental crust during oceanic subduction
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Abstract: The oceanic subduction zones and collision orogenic belts are critical regions for the evolution and matura-
tion of continental crust. However, the specific mechanisms driving crustal reworking and maturation remain subjects

of considerable controversy. In this study, we employ an integrated approach that combines petrography, geochemistry,
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zircon U-Pb geochronology, and zircon Lu-Hf isotopic analyses to analyze the felsic gneisses and their internal leu-
cosomes, basic gneisses, and diorites within the Guaijiaoliang-Shuangkoushan arc-related rock unit, in order to in-
vestigate the key mechanisms driving continental crust evolution in this region. Whole-rock geochemical analysis re-
veals that the felsic gneisses, basic gneisses, and diorites are enriched in large ion lithophile elements and light rare
earth elements, while being depleted in high field strength elements, characteristic of typical arc magmatic geo-
chemical signatures. The basic and felsic gneisses exhibit a continuous evolution in major element composition,
suggesting that the protolith of felsic gneisses originated from the crystallization differentiation of basic magmas. The
leucosomes within the felsic gneisses exhibit high SiO,, Al,O;, and Na,O contents but low K,0, CaO, Rb/Sr, and
Th/U ratios, characteristic of the geochemical features of trondhjemite, consistent with fluid-present melting. Zir-
con U-Pb geochronology reveals that the protolith of basic gneiss and diorites formed at 470.9+6.5 Ma and 441. 6
+3. 0 Ma, respectively. Hf isotopic analysis reveals that the zircon ¢Hf(z) values of the basic gneisses range from
+6.74 to +11.26, whereas the ¢Hf(¢) values of the diorites vary from +5. 13 to +8. 06. The leucosomes in the fel-
sic gneisses crystallized at 441.6+3.5 Ma, and their zircon ¢Hf(¢) values range from +7.24 to +12.27, which is
consistent with those of the basic gneisses. Comprehensive analysis indicates that the Guaijiaoliang-Shuangkoushan
arc magmatic-metamorphic unit records two phases of arc magmatic activity and one phase of metamorphic-anatexis.
During the ~470 Ma oceanic crust subduction phase, subducted fluids facilitated partial melting of the mantle
wedge, leading to the formation of the first phase of arc magmatism, i. e., the protoliths of the basic gneisses and
felsic gneisses. During the transition from oceanic subduction to continental collision at ~440 Ma, the upwelling of
the asthenosphere triggered partial melting of a hydrated mantle, resulting in the formation of diorites. The emplace-
ment and crystallization of the diorites released heat and fluids, inducing hydrous partial melting of the felsic gneiss
protolith. Both phases of arc magmatic activity and the subsequent anatexis events promoted the transformation of
the continental crust from basic to acidic within the North Qaidam subduction-collision mélange belt. This suggests
that arc magmatism and anatexis processes during the transition from oceanic subduction to continental collision
were key faclors driving the reworking and maturation of the continental crust.
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(42372247 ); Taishan Scholars Program

Nation Natural Science Foundation of China

Fund support:
(tstp20231214)

ORI b ¢ EL AT I Th) B A7 38 A 10 R L 1
SHC SRl BRI A D S ) S5 A S A e o 7 el Bk
fb 2 6t 2 2 — ( Spencer et al., 2017; Korenaga,
2018) o Jl i R Pl e HAT SRS B 20 2 454, i
EE MRS |- 5e S Bk BT H5E (Rud-
nick, 1995; Rudnick and Gao, 2003; Zhu et al.
2022) , SR A3 5 e 22 el A L BT, 5 G 5T
MR RS 22 55 5 3% ( Hawkesworth and Kemp, 2006;
Hacker et al. , 2011) , PRE Kb M52 B B 5 1 AL
B & R 7 T 5 fi 5C Bt ) JE AR [) 8 22 — (Hac-
ker et al., 2011; Niu et al., 2013; Zhang et al. ,
2014) R H1 T Hu 72 iU 2246 1 b 5T 55 M 1)
A 1) B I, SRR 9T 0] A BBk A ( Fer-
reira et al. , 2020) ,

KBt 5e V¥4 53 5242 1L Bk s A B CR

AHI: (Rudnick and Gao, 2003 ; Davidson and Arcu-
lus, 2006) , H A= H LUK B KBl L s ol B 1T
PIff wpas 2% AE FH ( Rudnick , 1995 ; Taylor and McLen-
nan, 1995) A2 (AR ey iR BT 5% Bt 3t 58 5 3 i
WG 7 0T (Arculus, 1981; Zheng, 2012) , filf
fE LI (A RRERF ) 8 52 BT e e AR
Az RIS 0400 46 [ B 1) iy — ki i 42 3k A v o 4
P&l %) 2l 1 By B ( Thompson and Connolly, 1995; Zheng
and Gao, 2021; Zhu et al. , 2022) i PiC 5% T %
JoT~ 2 1 B R Rl € A B AR IR A B B 3 )
2434 72 ( Rudnick , 1995; Cawood et al. , 2013) . filf
FEFTRBEICA FEAEHITC s 1SS IR i 75 b g
LAY K A K il L B R A B K J5 b e 1 B B ( Taylor
and McLennan, 1995) , 1Mij jlUA 3¢ 38 5o 43 55 4% S 4 H
T R e — e S o B A i rh =R TR 1, e



14

NI . TR Rt~ i o A e A s 5 1

PASEAC S AR DR SR ANTGAAE F A 1 21

T BE 25 S INHE S A8 2ok TR T [0 g DA 1T
e L 7E 7] PR 4 53 7% 4K ( Greene et al. , 2006;
Miintener and Ulmer, 2006; Jagoutz, 2010, 2014 ),
B AN 8 2 , ity — it 0 92 DU 3 -5 08T A Ay S Bl
FCH I b RIS G 5 2 1y e IR gL AL
TG 52 O BUA ST R A E i 58 2 19 1
# ( Thompson and Connolly, 1995; Zheng and Gao,
2021; ZFP5E, 2023) , R, H AT A R KR
SINDK Ay Rl ) o8 et 2 o ke 728 Wb 7 1 P B R 28 B, DA
KRt 23K — 1 B2 R A= FE Al 4 35 117 (Zha et al.
2022) ,

BEAC ST R Fi A 2 — A% SR ol 2L TN
WAR JfHY ( Zhang et al. , 2008a, 2009a, 2009b; Yu
et al. , 2013) ,iC5% 1 D7 IR o 281 ki — it lf 8 1) 56
Rl (B asess, 2003; BT, 2004,
Zhang et al. , 2013; Song et al. , 2014b; A/INHESE
2015) , AFN)TIZ o0 A AR e B BOE BAY R TSI
EWE (PATEE, 20045 Wu et al. , 2009, 2014)
ki — Bty il 48 5 A b R R W] Al 18 S A (W
et al. , 2009; Zhao et al. , 2017) , W35 GG
B FR ) AR AR BT X I B S R S T AL T
& T R E A A SR AR L kA 2 o)
B AR, S P IR i 5 i — i 0 455 6 1) 1) 4 J
FE K 520 ~ 460 Ma 5 455 ~ 420 Ma ( Yu et al. ,
2021) o Hrr yEFEI i Bei s 3 a e db 4
B BEAT I b DX B R B 1 1 22 1 X B0 40, (H Ut
W BRI T S5 I ik Bl A A T T S i b e 1)
5,8 T 5T Ui 15 (Gao et al. , 2022, 2023;
FREAE, 2022) M0 -5 b7 i AR AR OC B BRI
KA ihor R i -V a R T B i -
Wi o 45 7y B ) ) il 4 0 o T R TR S BBk
gt e g R b b DIk 5 BT A AR B o Al
S WK 54 5 4 (Song et al. , 2014a, 2014b; Zhao
et al. , 2017; Yu et al. , 2019b; Yang et al. , 2020) ,
XBEAE i F2 B T B Rl S B ER (HA A U A
W HIE LT B e e SE RN o P Ze i R i 1R &
(Zhao et al. , 2017) . HMTT UL, Sl G i il 42 2%
iy T Il = P ST e B B it e A K B AR OGRS
LI — il 428 [y Be e PR AL R AF AR i, el
1R~ R 1L DB E AP A -3 LU
KB BERITNIRE T R IUE SR S A E IR
AR A il e 3R R) R 2 M 11, PRI AR SCAE % 9K

IR ITANTERE T PR A A B A DL
FEoRAL G Rl AR AR Il e AL ) S B 7

1 MRS

BEA LR PRI Z At 3 48 1k K Hh B 5 40 %
bz [a], 5 NW-SE [0 JBAG , Pl 21115 11, < B4
2EALFERVP M Bl R AT, 5 SR AR B DL SE L
G SAARTE , A0 AR bR DL % 55 ek i i A B, 5
T BT R 4 ol 8 2% 55— ) 0t BT R 4 22 TE T 4 43
(] 1a) . Sedb S il 2% 5 Al ok — 4 X 43
KPS RGHTT ;. W] L K Zm iy A SE a2 e
— T AR Y, A R B U SO 2 A (5K
A4 2015; Zhou et al. , 2022) , Hih Sedv g
JF 8 5 F 78 3 v 7 A £ R M DX, AR A VAT X
RPGAEAF 2 400 km , TR IE R R R R AL
i DU R SGE B ARIE e F - i MR A
PE R KL 5 A R AR 7 41 ( Yu et al. , 2019a,
2019b) . MRS A 4L A A8 0T Ak D S SRR AR A 25
5, St 2k i e - v R R TORY AT R 4 4 IR
P IC(Zhang et al. , 2008b) , F 2K [ P AK U >4
HHE 25— B R PROC B R LI 5 — A RR A B e ¢
A RN - B R RO R RS - RS
HOT(El 1a), LAk, G DF9E TAEMERA, JRA
I8 43 7 245 B0k — A O AN FRR 72, 4 1) 7 4
A%k = He -8 /5 P AR BT i P8 BE, 4N Zhou 45 (2022)
eSS R A 2 )BT JE O ) — 9 2R AR
BIG (I 1h) DR SR8 L AN R AT 438 3 A4S
WS BT /INL L 2 3% 1w T — o T 7 o
TG PRG-I LA 2 A8 o B T A R - 75 XU
PRI — M = R AZ B R OG (B 1b)

ARSI XA T 45 £ 22— LT L 9IS 728 o o
JC(E 1b) P, 1Z B oo A & W AR R AN [R) 1) 2
A MINEHER A AHA R A ads, K
o A N AR A A A AR S AR A AE X
R B AR T R - N T R 5 AR T
AL I = A O ) L B R AR L R
AR L A A AR TR R e 5, o iR
FO4E AR S 498 ~ 448 Ma (= AEEFRSE, 2002; AT %
HAE, 2020) , AT REAR R T R 5 S8 Tk R PR oA O
BUBIE 32 16 sl R ek & SSZ I &t AU 4H Wi 4. I
Hb AR RITIN R B A R AR & AR Y B 4 -



22 Ho4OW W o &k 545 &
42°N
- REEEAIT
40°N
38°N
36°N
SIS
o it R [ N EITELE
88°F 90°F 92°E 94°F 96°E 100°T 102°F
b
fif Y
", -]t
£ ““Eﬁ; W : - gm
= kL N~ i —
3 ' ' N o = | fitgrLi
¢ A \ - i
N WP B i
W R Tl [ Enmes
_—% I i s
= & B ks
ks Ay
o B ot
% B
% [ EOISE
% - JESAGSET
/1) o i
% = - eI
el ﬁ% 21LLS4-1 0 %
= 2., 21LLS4-2
., 21LLS44 Bl o
AN i
% Ak
2
N o
z | G
£l S N
= !
0 \ .
1 1 1
95°00'E 95°10'E 95°20'E
B1 St SR ol 24 5 R T 1] (a, 36 Zhang er al. , 2017 f&840) FSeb G Aty 16 B (b, 3% Zhou et al.
2022 B#0)
Fig. 1 Geological sketch map of the North Qaidam subduction-collision mélange belt (a, modified from Zhang et al. , 2017)

and geological map of the western part of the North Qaidam metamorphic belt (b, modified from Zhou et al. ,

2022)
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Fig. 2 Field views of studied rock samples of Guaijiaoliang-Shuangkoushan arc-related rock unit, North Qaidam
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Fig. 3 Photomicrographs of studied rock samples of Guaijiaoliang-Shuangkoushan arc-related rock unit, North Qaidam
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Fig. 4 U-Pb concordia diagram for rock samples of Guaijiaoliang-Shuangkoushan arc-related rock unit, North

Qaidam (a~c) and frequency dustribution histograms(d)

& 4d HPBIEA IR . IUESRARRS (00T %5, 2004; R/HESE | 2014; Wang et al. , 2018; Liet al. , 2018, 2022; Yu et al. , 2019a, 2019¢; Gao
et al. , 2021; Cai et al. , 2021) ; A JF4F S (B AR S, 2006; Chen et al. , 2007 ; Zhang et al. , 2008a, 2010, 2011, 2017; Yu et al. , 2015¢,
2019a, 2019¢; Ren et al. , 2017, 2019; Wang et al. , 2018; Yang et al. , 2020; Cai et al. , 2021)
data source in Fig. 4d: arc magma age ( Shi Rendeng et al., 2004; Zhu Xiaohui et al. , 2014; Wang et al. , 2018; Li et al., 2018, 2022; Yu
et al. , 2019a, 2019c; Cai et al. , 2021; Gao et al. , 2021 ; metamorphic age ( Ma Xudong et al. , 2006; Chen et al. , 2007 ; Zhang et al. , 2008a,
2010, 2011, 2017; Yu et al. , 2015c, 2019a, 2019c; Ren et al. , 2017, 2019; Wang et al. , 2018; Yang et al. , 2020; Cai et al. , 2021)
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Table 2 Zircon Hf isotopic data of the diorite, leucosomes and basic gneiss in the Yuka area
WM& /Ma "yb/'""HE 20 SLw/'"Hf 20 Tope/ue 20 CHEZVTHE, gHE(1)  tpy/Ma tfy/Ma A
21LLS4-1 K
1 442 0.010 297 0.000 035 0.000 424 0.000 001 0.282 676 0.000 019 0.282 673 6.22 803 943  -0.987 235
2 442 0.015 866 0.000 032 0.000 618 0.000 001 0.282 699 0.000 019 0.282 693 6.96 776 903  -0.981 400
3 442 0.009 117 0.000 031 0.000 374 0.000 002 0.282 710 0.000 020 0.282 707 7.44 755 877  —0.988 738
4 442 0.022 654 0.000 381 0.000 776 0.000 013 0.282 701 0.000 016 0.282 695 7.01 775 900  -0.976 620
5 442 0.024 216 0.000 451 0.000 863 0.000 015 0.282 720 0.000 020 0.282 712 7.63 751 866 -0.974 011
6 442 0.011 187 0.000 094 0.000 459 0.000 003 0.282 680 0.000 018 0.282 676 6.33 799 937  -0.986 167
7 442 0.009 686 0.000 017 0.000 398 0.000 000 0.282 671 0.000 018 0.282 668 6.06 810 952 -0.988 021
8 442 0.009 207 0.000 043 0.000 382 0.000 001 0.282 674 0.000 021 0.282 671 6.16 805 946 -0.988 507
9 442 0.009 358 0.000 061 0.000 375 0.000 001 0.282 645 0.000 018 0.282642 5.13 846 1002 -0.988 692
10 442 0.020 433 0.000 099 0.000 679 0.000 002 0.282 687 0.000 019 0.282 681 6.53 794 926  -0.979 553
11 442 0.022 383 0.000 039 0.000 741 0.000 002 0.282 731 0.000 018 0.282 725 8.06 733 842 -0.977 682
12 442 0.011 623 0.000 046 0.000 490 0.000 003 0.282 677 0.000 017 0.282 673 6.23 804 942 -0.985 238
13 442 0.007 232 0.000 017 0.000 288 0.000 000 0.282 697 0.000 017 0.282 695 7.00 77 900  -0.991 324
14 442 0.034 521 0.000 039 0.001 230 0.000 004 0.282 667 0.000 020 0.282 657 5.66 834 973 -0.962 946
15 442 0.033 491 0.000 092 0.001 067 0.000 001 0.282 697 0.000 019 0.282 688 6.76 788 913  -0.967 870
16 442 0.012 534 0.000 024 0.000 475 0.000 001 0.282 695 0.000 018 0.282 692 6.89 778 906  —0.985 687
17 442 0.007 667 0.000 011 0.000 284 0.000 000 0.282 692 0.000 018 0.282 689 6.81 779 911 —-0.991 454
18 442 0.020 840 0.000 894 0.000 720 0.000 029 0.282 696 0.000 018 0.282 690  6.83 782 910  -0.978 322
19 442 0.009 430 0.000 132 0.000 374 0.000 004 0.282 716 0.000 016 0.282 713 7.64 747 865  -0.988 722
20 442 0.009 591 0.000 033 0.000 353 0.000 001 0.282 671 0.000017 0.282 668 6.05 809 952 -0.989 367
21 442 0.026 932 0.000 276 0.000 880 0.000 007 0.282 725 0.000 017 0.282 718 7.8l 744 856  —0.973 500
22 442 0.010 826 0.000 057 0.000 444 0.000 003 0.282 723 0.000 017 0.282719 7.87 739 853  -0.986 616
23 442 0.008 864 0.000 014 0.000 357 0.000001 0.282 712 0.000 019 0.282709 7.50 753 873  -0.989 260
24 442 0.013 151 0.000 076 0.000 443 0.000 002 0.282 680 0.000 018 0.282 676  6.35 798 936  —0.986 660
25 442 0.010 348 0.000 014 0.000 429 0.000 001 0.282 684 0.000 018 0.282 680 6.49 793 928  -0.987 081
26 442 0.010 541 0.000 101 0.000 433 0.000 003 0.282 675 0.000 016 0.282 671 6.16 806 946  -0.986 973
27 442 0.012 490 0.000 072 0.000 512 0.000 002 0.282 703 0.000 017 0.282699 7.14 768 893  -0.984 593
28 442 0.006 677 0.000 019 0.000 267 0.000 000 0.282 718 0.000 019 0.282 716 7.74 742 860  —0.991 943
21LLS5-1 KIEFUTIFRA ik
1 443  0.013 078 0.000 165 0.000 612 0.000 006 0.282 749 0.000 016 0.282 744 8.75 706 806  —0.981 578
2 443 0.031 096 0.001 331 0.001 107 0.000 042 0.282 776 0.000 014 0.282 767 9.59 676 760  —0.966 664
3 443 0.074 286 0.001 904 0.002 909 0.000 053 0.282 773 0.000 023 0.282 749 8.95 715 795  -0.912 379
4 443 0.070 771 0.004 657 0.002 352 0.000 152 0.282 790 0.000 019 0.282 770 9.70 680 754 -0.929 165
5 443 0.085972 0.002 165 0.002 828 0.000 070 0.282 813 0.000 018 0.282 789 10.36 655 718  -0.914 812
6 443 0.050 491 0.002 358 0.001 698 0.000 058 0.282 772 0.000 016 0.282 758 9.25 694 779  —-0.948 861
7 443 0.057 486 0.000 552 0.001 951 0.000 017 0.282 760 0.000 019 0.282 744 8.78 715 804  -0.941 230
8 443 0.021 901 0.000 125 0.000 853 0.000 005 0.282 773 0.000 016 0.282 766 9.56 676 762 -0.974 313
9 443  0.117 814 0.003 292 0.003 787 0.000 100 0.282 841 0.000 022 0.282 810 11.10 629 678  —0.885 930
10 443 0.044 580 0.002 530 0.001 540 0.000 079 0.282 762 0.000 018 0.282 749 8.94 705 796  -0.953 614
11 443 0.069 702 0.002 262 0.002 356 0.000 065 0.282 809 0.000 018 0.282 789 10.38 651 717 -0.929 044
12 443 0.027 634 0.000 215 0.001 046 0.000 006 0.282 784 0.000 014 0.282 775 9.88 664 744 -0.968 509
13 443 0.054 863 0.007 618 0.001 863 0.000 222 0.282 777 0.000 018 0.282761 9.39 689 771 —0.943 896
14 443 0.026 699 0.001 868 0.001 063 0.000 071 0.282 797 0.000 015 0.282 788 10.34 646 719 -0.967 972
15 443 0.217 454 0.002 244 0.006 793 0.000 058 0.282 757 0.000 024 0.282 701 7.24 829 888  —0.795 391
16 443 0.055075 0.003 293 0.001 946 0.000 108 0.282 859 0.000 019 0.282 843 12.27 571 614  -0.941 371
17 443 0.041 636 0.001 354 0.001 603 0.000 057 0.282 772 0.000 019 0.282759 9.29 691 776 -0.951 715
18 443 0.111 258 0.003 154 0.003 610 0.000 090 0.282 778 0.000 016 0.282 748 8.92 721 796  -0.891 265
19 443 0.069 627 0.000 807 0.002 298 0.000 021 0.282 756 0.000 016 0.282 737 8.52 728 818  —0.930 778
20 443 0.076 936 0.003 564 0.002 722 0.000 107 0.282 859 0.000 020 0.282 836 12.04 584 626  -0.918 013
21 443 0.043 161 0.000 296 0.001 681 0.000 009 0.282 857 0.000 017 0.282 843 12.26 571 614  -0.949 364




Lu-Hf [A A7 2 K
Fig. 5 Diagram of Lu-Hf isotope rocks of Guaijiaoliang-
Shuangkoushan arc-related rock unit, North Qaidam
BT . BIEVES (Yu et al. |, 2019¢) 3 SR (GREHEHRAE,
2002; ${74T% 2004; Yu et al. , 2019a, 2019¢; Gao et al. ,
2021; Liet al., 2022) ; FRVEZ (Wu et al. , 2006; /NEESE
2014)

data source; ultrobasic rocks (Yu et al. , 2019¢) ; basic rocks ( Yuan

Guibang et al. , 2002; Shi Rendeng et al. , 2004; Yu et al. ,
2019a, 2019¢; ; Gao et al. , 2021; Li et al. , 2022) ; acid rocks
(Wu et al. , 2006; Zhu Xiaohui et al. , 2014)
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Continued Table 2
WES /Ma "Yb/HE 20 Lw/'7HE 20 SHOVHE 200 CHE/'THE eHE(1)  tpw/Ma ify/Ma 1
211L1S8-1 Jet: R
1 435 0.005 736 0.000 123 0.000 229 0.000 004 0.282 791 0.000 022 0.282 789 10.18 641 721 —0.993 093
2 435 0.003 762 0.000 072 0.000 143 0.000 003 0.282 763 0.000 017 0.282762 9.22 678 774 =0.995 704
3 435 0.001 654 0.000 037 0.000 055 0.000 001 0.282 805 0.000 015 0.282804 10.73 618 692 —0.998 358
4 471 0.006 949 0.000 046 0.000 271 0.000 002 0.282 777 0.000 019 0.282 774 10.47 661 735 —0.991 837
5 435 0.004 818 0.000 106 0.000 190 0.000 004 0.282 693 0.000 016 0.282 692 6.74 775 909  —0.994 277
6 435 0.005 915 0.000232 0.000234 0.000 010 0.282 796 0.000 020 0.282794 10.36 634 712 -0.992 943
7 435 0.003 805 0.000 047 0.000 141 0.000 002 0.282 749 0.000 017 0.282748 8.73 697 801  —0.995 754
8 435 0.002 408 0.000 062 0.000 085 0.000 002 0.282 811 0.000 019 0.282 811 10.95 610 680  —0.997 433
9 435 0.003 357 0.000 085 0.000 128 0.000 003 0.282 718 0.000 015 0.282717 7.63 740 860  —0.996 137
10 435 0.004 594 0.000 043 0.000 180 0.000 002 0.282 796 0.000 016 0.282795 10.38 632 710 —0.994 578
11 435 0.001 838 0.000 009 0.000 066 0.000 001 0.282 801 0.000 017 0.282 801 10.60 623 699 —0.998 006
12 435 0.002 764 0.000 039 0.000 106 0.000 001 0.282 768 0.000 016 0.282767 9.42 670 763 —0.996 821
13 435 0.004 859 0.000 019 0.000 182 0.000 000 0.282 765 0.000 017 0.282763 9.28 675 770 —0.994 522
14 435 0.005290 0.000 125 0.000200 0.000 005 0.282 757 0.000 017 0.282755 8.99 687 786 —0.993 962
15 435 0.003 368 0.000 094 0.000 126 0.000 004 0.282 766 0.000 016 0.282765 9.32 674 768 —0.996 201
16 435 0.005 251 0.000 109 0.000 205 0.000 005 0.282 746 0.000 017 0.282 744 8.61 702 807  -0.993 811
17 435 0.001 842 0.000 033 0.000 067 0.000 002 0.282 778 0.000 017 0.282777 9.77 656 744 =0.997 992
18 471 0.005 129 0.000 036 0.000 192 0.000 002 0.282 784 0.000 016 0.282782 10.75 649 720 —0.994 218
19 471 0.006 441 0.000 154 0.000 254 0.000 006 0.282 778 0.000 018 0.282 776 10.53 658 731 —0.992 336
20 435 0.003 363 0.000 058 0.000 127 0.000 002 0.282 734 0.000 014 0.282733 8.22 717 829 -0.996 176
21 471 0.005 345 0.000 023 0.000209 0.000 001 0.282 776 0.000 018 0.282 774 10.46 660 735 -0.993 711
2 435 0.003 732 0.000 027 0.000 136 0.000 001 0.282 805 0.000 017 0.282 804 10.70 620 693 -0.995 894
23 435 0.003 029 0.000 038 0.000 119 0.000 002 0.282 780 0.000 016 0.282779 9.82 654 741 —0.996 411
24 435 0.001 401 0.000 005 0.000 046 0.000 000 0.282 781 0.000 019 0.282780 9.87 652 738 —0.998 600
25 471 0.004 263 0.000 064 0.000 152 0.000 002 0.282 798 0.000 017 0.282797 11.26 629 692 —0.995 433
26 435 0.003 217 0.000 008 0.000 119 0.000 001 0.282 773 0.000 018 0.282772 9.59 663 754 —0.996 409
27 435 0.002 502 0.000 030 0.000 088 0.000 002 0.282 766 0.000 015 0.282765 9.35 672 767 —0.997 360
% W
8 WKE " e — N
ool RGBT RAFIE S RISTH R AL, B LILES
S S R B E M HFSEs BLE 5 #1(E 7a) HEA A
. = B . .
o S it i Hs o BB, (La/Yb) (=7. 84 ~7. 85, H:
oy r ) e
= o LREEs H A i#4%, (La/Sm) (=3. 1 ~3.2, HREEs
st . e
R UL AR X B A S L 3 B K, (Gd/Lu) =10 1~
0 SR pL L 3 . )
1.2, HEE A Eu %% (Euw/Eu” =0.79~0. 85;
5k
Kl 7b)
-10 1 I 1 I N . =
0 200 00 600 800 1000 NK 1Y Si0, &k 52. 78% ~ 54. 02% , B A
a
) » B B CaO (7. 93% ~ 8. 00%) , Al,O, (19. 00% ~
B 5 SEAbGEn M- XU LA 3% -8 R T A

19.46%) Na,0(4.01% ~4.05%) F1 K,0 (1. 00% ~
1.13%) & DL KA IR 1 FeO" (6. 81% ~7. 17%) Al
MgO(3.51%~3.59%) i (&l 6) ,Mg"{H 4 33.35~
34.00, S AR KK 0. 88 ~0. 90, J& THEAR i A1 .
TE TAS Bl 45 I TR N A DXL 78 K,0-
Si0, i B 5 VE TAS I R IR (E 6) . N
K5 1R 3 200 i B A LAY R T R 4 A i
fE, B AELILEs I S HHFSEs (Bl 7¢) , #i + ot E R M
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£3 BFHRAKE KERFKE ZOE EERFREEETE (w,/ %) MHETE (v,/10°) &£
Table 3 Contents of major elements (w,/%) and trace elements (w,/10™®) of the diorite, felsic gneiss, leucosomes
and basic gneiss in the Yuka area

Ak AR KB R Rk A Fetk A
FERSS 2111842 21LLS4-4 21LLS6-7 21LLS7-4 21LLS5-3 21LLS5-5 21LLS8-6 21LLS8-8
Sio, 52.78 54.02 71.06 70. 32 71. 19 71.17 52.16 53.69
Al, 0,4 19. 46 19. 00 13.62 13.89 14.22 13.95 15.41 15.51
Fe,0," 7.97 7.57 5.41 3.60 2.79 2.88 11.29 11. 14
FeO" 7.17 6.81 4.87 3.24 2.51 2.59 10. 16 10.03
MgO 3.59 3.51 1.04 2.04 0.94 0.97 6.99 5.71
Ca0 7.93 8.00 3.06 3.81 3. 64 3.79 8.26 7. 60
Na, O 4.05 4.01 3.99 3.74 5.18 5.15 2.49 2.95
K,0 1.13 1.00 0.11 0.44 0.23 0.21 0.37 0.28
MnO 0.15 0.15 0.15 0.05 0.05 0.06 0.14 0.17
Tio, 0.70 0.55 0.24 0.34 0.38 0.35 0.87 0.83
P,05 0.26 0.24 0.02 0.05 0.11 0.10 0.09 0.10
LOI 1.66 1.62 0.94 1.40 0.88 1.00 1.62 1.70
Total 99. 68 99. 67 99. 64 99. 68 99. 60 99. 62 99. 69 99. 69
Mg* 33.35 34.00 17. 60 38.63 27.24 27.23 40.75 36.28
A/CNK 0.90 0.88 1.12 1.03 0.94 0.91 0.80 0.83
A/NK 2.47 2.47 2.04 2.10 1.62 1.60 3.43 3.01
FC3MS 0.70 0. 66 1.55 0.76 0.65 0.64 0.83 1.00
Se 18.09 17.91 13.98 17.49 10. 20 9.86 37.06 35. 66

' 169. 63 179. 11 21.40 57.16 56.67 56.73 265.70 262. 89
Cr 5.72 6.03 1.76 38.96 2.62 1.65 57.70 53.95
Co 20. 49 20. 56 4.11 7.56 4.65 4.58 33.65 29.12
Ni 9.05 8.27 1. 11 12.76 3.14 3.44 30. 08 27.00
Cu 92.00 113.18 3.10 6.71 5.87 3.28 15.62 21.86
Zn 85. 06 89. 13 10. 55 28.99 13.08 15.16 82. 60 57.65
Ga 20.92 20. 88 9.59 14.28 11.85 11. 86 18.22 18.08
Rb 24.19 27.95 4.05 21.00 5.97 6.16 11.27 6.98
Sr 1151.29 1185.55 323.29 408. 00 277.53 266. 64 326. 81 449. 82
Y 16. 69 18. 67 32.64 23.54 18. 14 17. 84 22.72 23.17
Zr 71.09 96. 41 108. 51 116. 83 114. 59 102. 22 59.12 62.50
Nb 3.29 4.90 1.50 2.99 3.00 3.19 2.77 1.75
Cs 1.86 1.99 2.85 4.31 1.33 1.29 2.87 2.17
Ba 593. 96 695.13 116. 69 869. 88 199. 61 177. 87 133.42 119. 63
La 32.69 35. 60 9.78 13.56 16. 30 15.90 5.32 8.31
Ce 61.29 68. 87 24.37 30. 42 32.37 31.64 17. 00 19. 69
Pr 7.34 8.49 2.66 3.83 4.24 4.15 2.67 2.75
Nd 28.78 34.67 11.39 16.23 17. 11 17.47 13.39 12.87
Sm 4.24 5.58 2.41 3.54 3.34 3.24 3.38 3.12
Eu 1.28 1.57 0.81 0.97 0.84 0.84 1.06 1.11
Gd 3.67 4.62 3.39 3.47 3.16 2.81 3.62 3.56
Tb 0.50 0.63 0.68 0.61 0.51 0.49 0.61 0.65
Dy 2.93 3.27 4.66 3.77 2.87 2.97 3.79 3.97
Ho 0.56 0.69 1.02 0.83 0.67 0.63 0.81 0.89
Er 1.57 2.02 2.97 2.48 1.97 2.04 2.40 2.62
Tm 0.25 0.30 0.44 0.36 0.31 0.29 0.34 0.38
Yb 1.74 1.84 2.69 2.52 2.08 2.03 2.21 2.60
Lu 0.24 0.27 0.38 0.37 0.33 0.31 0.33 0.42
Hf 2.26 2.72 3.21 3.48 3.40 3.17 1.89 2.01
Ta 0.18 0.23 0.09 0.16 0.13 0.20 0.15 0.11
Pb 10. 63 10. 55 2.34 3.14 2.46 2.16 2.38 2.72
Th 8.19 8.57 2.83 3.32 3.51 3.54 0.52 1.87
U 0.54 0.78 0.25 0.30 0.30 0.42 0.31 0.35
Sr/Y 68.99 63.49 9.90 17.33 15.30 14.95 14.39 19.41
(La/Yb) y 18.73 19.37 3.63 5.38 7.85 7.84 2.41 3.20
(Nb/Yb) y 1.88 2.66 0.56 1.18 1.44 1.57 1.26 0.67
Eu/Eu” 0.99 0.95 0.87 0.85 0.79 0.85 0.93 1.01

FC3MS=FeO"/Ca0-3(Mg0/Si0,) ,
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Fig. 6 Harker diagrams of major elements (a~h) and

TAS diagram (i, after Middlemost, 1994) of Guaijiaoliang-

Shuangkoushan arc-related rock unit, North Qaidam
BARATE . HIEPEE (Yu e al. | 2019¢) 5 FeEas (CREFRSE, 2002; {474, 2004; Yu et al. , 2019a, 2019¢; Gao et al. , 2021;

Liet al. , 2022); HHEA (74T4, 2004; Wu et al. , 2006

s Yuet al. , 2019¢) ;5 FRYES (Wu et al. , 20065 R/NESE, 2014)

data source: ultrabasic rocks ( Yu et al. , 2019¢) ; basic rocks ( Yuan Guibang e al. , 2002; Shi Rendeng et al. , 2004; Yu et al. , 2019a, 2019c;
Gao et al. , 2021; Li et al. , 2022) ; intermediate rock (Shi Rendeng et al. , 2004; Wu et al. , 2006; Yu et al. , 2019¢) ; acid rocks (Wu et al. ,
2006; Zhu Xiaohui et al. , 2014)

B FEA B A (La/Yb) = 18.73~19.37, 7
B Eu S8 HE (Euw/Eu” = 0.95~0.99; & 7d),

5 e
5.1 BHRMESEARK

FEVE R R A B A A% B EL A B IR 35 R R
fE,Th F1 U & 885, Th/U = 0.002~0. 186, it
BRI ERES A (B da) . AL R BRI R A
JEUAAERS K 470.9 + 6.5 Ma, 35 W HIE W T 17240
PRBBE( TIRRAE, 2022) , DN A 5 A BU0RE A A A
Hth— R H R AR IR B NG ATl N
441.6 + 3.0 Ma, X R FREFEM IR B, FEtE H KA
B B A B A IR S5 # (Th/U = 0. 001 ~
0. 118, [ 4a) , 5 80748 J5 5l PH 85 A0 R I — 30 (R T

1545 2004)  INBCEYI4EIE 9 432.6 + 4.0 Ma; %
AR EE £7 T BT 441, 6+3. 5 Ma B INACE 4
%, AT ILES (0 4R 35 P07 2500 (1R 4b) | LT3R IR
AT ( Zheng et al. , 2006) , 33X W 21 4F % 5% % 1
i AR ik 2 v G — 178 o -

WRHE RN 1) SCHR B B A SC o 4 TAE, 7l 4
JCLR AR R T8 A 7y B P R - R B R A K - TR T B
K53 AWK (B 4d) » @ 29 470 Ma 5T ol
B SR G R B2 ISR 3, B A R
R A M R MR SR R R A R
BN A A E KRB 2, A TR | 5 224
DX (ST AR, 20045 A/DHESE, 20145 Li et al.
2018, 2022; Wang et al. , 2018; Yu et al. , 2019a,
2019¢; Cai et al. , 2021; Gao et al. , 2021); @ %
440 Ma Fli7eF v B B, FF Bl 1) 5 9 - ORIE TG 31
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Fig. 7 Primitive mantle-normalized spidergram (2, c, e) and chondrite-normalized rare earth element pattern (b, d, f) of

rock samples in Guaijiaoliang-Shuangkoushan arc-related rock unit, North Qaidam ( chondrite and primitive mantle-normalized

values are from Sun and McDonough, 1989)

TE AL 45 43 A T8 Bk Ll R 22 K AT o1 45 i DX 1Y)
SHRIAE i) v, B ik v I R IR DL LI KO AR
(Wu et al. , 2009; Zhao et al., 2017; Yu et al.
2019¢) .
5.2 INERBKE

B T i 5 DX i 1 R R R £ R b DX 35 AR
WU LA S 70 o BT N B RR A | K T
J IR B DN 5 ) R A 2 21 B aA v g B 1 4n
TSI SSRGS — RYA KSR, B, 75
M A R 5 S T i YR X 22 i A 2BV A A 25
HNERIREW, AR RA SRS, e miEH &
XA B (JERTIEAE, 2012) o B
X 1L 3 =78 i BT N BE P R 1 MgO
HHMFETREMMYTENLRME 8, CafEf
AU PR AR AT AL U IE G5 AR S, B G, SR
ATRSE A BT AR ARG R MgO 5 Ca0/AL O, fH
HEHIFMEEZR (Hill et al. , 2011) (K 8a), MgO
5 Na,0 Z[AIA HAHICICFR (18] 8e) LA SN FETE] 2
61 Eu 525 (B 7h) BB RN A I8 V8 R 4 i o
SAHBE I AR ARG, FEd S/Y (14.3~19.4) F
Y/Yb(8.9~10.3) {HAR{k i AR/, H AR E AR 4
TCER 5T 5 AN, R WA 43 B 45 i O Al S SRR

FIRCA I EE A

AR it (0 Bl i o0 2 A ) 457 R AR AE, AT LA ) )
P G- LA 2R — 78 T BT P PR R R 1 R
FHEHAR L R PR T Y AR Y
FEFENE S Sk B AN T R s 4 TR R
Kbtise, X5, Nb/La {H 5 Si0, & &
IR A R IE A 256 2, X 5 TR YL K i 52 4
iR AR—2 (18] 8)) . Nb., U HA A [H 13t
BRALZAAT N, A AR 40 lRn A 0 4 S ok B v
T2, R, 33— T AR o 0 5 ok 52 YR e
BB T A £ ) A 3K AR R (Hofmann and
Jochum, 1996) ., b IX 55 F1 52— R 1L 364 5 Jpk
TR R 58S K 80 & Nb/U fH, Iz
Nb/U {H 580 Si0, &8 2Z MIEATELE R K R
(&1 8i) , 87m 45 FA 2 — WU Ll KLk e BR A R S TE 5
KRBT IFR AP e IR AE . U)ok, i
FER B H—BUR I S22 E, LB Af R &R
AR/ 25— S A U-Ph AR IS AU JC 2 4
fIECIE 7a) , i A Bl e TR Y A 2B 10 AT BEPEARA

81 i DX A5 A 4R LT L SIS — A8 iR BT ik
PER B B B 1Y MgO & & BRI Sio, &
A8 TR A M0 ) R BE R IR 4 e Bl L )
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Fig. 8 The major elements—MgO Harker diagrams (a~f), Harker diagrams of trace elements—SiO,(g~h), (Hf/Sm)—(Nb/La)
diagram (k, after LaFleche et al. , 1998) and SiO,-Ti0O,-K,O diagram (1, comparable data from France et al. , 2010) of rocks in

Guaijiaoliang-Shuangkoushan arc-related rock unit, North Qaidam
BB . HWEMES (Yu et al. , 2019¢) 5 FEPEA ( FHETEE, 2002, $44T45, 2004; Yu et al. , 2019a, 2019¢; Gao et al. , 2021; Li et al. ,
2022) 5 S (ATATEE, 20045 Wu et al. , 2006; Yu et al. , 2019¢) 5 FRYES (Wu et al. | 20065 A/MNEZ | 2014)
Data source: ultrabasic rocks ( Yu et al. , 2019¢) ; basic rocks ( Yuan Guibang e al. , 2002; Shi Rendeng et al. , 2004; Yu et al. , 2019a, 2019c;
Gao et al. , 2021; Li et al. , 2022) ; intermediate rock (Shi Rendeng et al. , 2004; Wu et al. , 2006; Yu et al. , 2019¢) ; acid rocks (Wu et al. ,
2006; Zhu Xiaohui et al. , 2014)

Bf, X SeRE R E ERE FRATLEMERM+ YA & (Kelemen et al., 2014; Hernandez-Uribe
JCE (W0 Cs \Ba K Fl Sr) i #ICER (W Nb, et al., 2021; Liet al. , 2022) , % T 54t Aff oh flf
Zr) BRAE, JF HBAA Ti Ta Nb (0B TR #EAA 0 BTE U AT 5t b sk Ak 2 RRAE i B
3, 2P s T H S M ehar A SR py g M2 %% WTREAATE LA R WA, 5 I & D Rl AL TR G i 7e ) o
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BRI et B S 5T S AR A T X K
AR, W 8k TR, £ R ML IX 3 A B - XU H LR
ER LR TTN R A B B (Nb/La)
{H AT A (HE/Sm) 8, BRI i iR A
P, WA WS WA G MINA L S A5
KA R (] 3a)  FRATIA N R JeME R ks
(4 JEL TV I R Y X, L2 DX 3z 30k AR o i
7 B KA I S ARAE

La—Si0, Fil Yb=SiO, A& Z & HI I 5 5T 7 kA
{18 i R T e Rl 43 5 45 o ) T A R S
( Brophy, 2008, 2009) : & T HUE AR MBS T
Xof T REE B A DA o R A TR s RO B B
B R B K s B iR sio, SR n e, 5
JRAAH L SR T La Yb & i LA B T R %,
HETTFHO L OCR S 5 UE S E R Lot R
SEAHITAL, TS O R A 4 S o SV E T 32 AR
AR IE T R B, B KB BB AR b Sio, & & YA
Wi Tk, R La Y 5 f 2 2 39K (5] 8g
8h) , I HAKIE BT i B A # oo R e W s T 4G
KRR IR oo R B, KT R BRA AR A
[ (La/Yb)=2.6~3.9] R A T M A poa A
i (La/Yb) (=1.7~2.3 | 5 WY &+ o &4
B —AAE R T AT A A ( Taylor, 1967; Rudnick
and Gao, 2003 ; Davidson and Arculus, 2006) ., Z<WJF
FEP I R 5 AR A B A O R LT R
BRRERT G 45 o s (8 7h) . RYE SR
AR WG 5 TR A R R B8 B R B 5 1Y T,
B i T WA T4 20 S B A TR I PR o
J R RRA 1) TiO, 1% 12 (Berndt et al. , 2004 ; Koepke
et al. , 2004, 2005, 2007 ; Furnes and Dilek, 2017)
1 b DX A % - XU L X S 5 RR A Y TiO,
Bt T MORB 45 8 43 5 S T A 9 5T 1 R 1Y
TiO, & (18 6g) , 545 dh 735 I i 8 Jo s 1
W TiO, 5 B R XTI, I 7S A B 5T JRR A 1Y) 20 15 45
WHE A, 7E Ti0, -K,0-Si0,/50 =kt 51 & i I
(France et al. , 2010) ,ﬁ%}ﬁﬁ%%ﬁﬁ&?&ﬁ%
AR S B SR A RN A (8 81) o T IEE R IRk
HREFR A REZ BB EZRER  —800 A
AEIE DX E RS IR I Bl KOS T R R
A AT BB IR T [ I 3 B M BRI ) 4 b 0 5
KL BT bR 5 3 s B ALY RS 4 HE [A]
(R AN EFRFESE, 2022; &1 5) 7R &k A [
— IR X (o3 | TR 2R 2 AL o

DA T B S T T e 5 8 K o U 3R Y 4 R
S Kb P A3 ik DL K e - g SRR A A
(Annen et al. , 2006; Bachmann and Huber, 2016)
b A 5 — 1 e R SR I (R 3R A
(175 BRI R SRR, PRI Ol F U S SR Y 40 B
S5 G BN EARH ) 1 R [ 37 2R R
SR, AEAWEFE b | SR IR 52 00 e 2 [ 37 3%
A BURHAE B R R I AR R [ e R 4 A
R, PEEUE AL, I A 0 IR X R B I N R i
ER AR TR 2D 60% ~T0% 4 T
5 (Annen et al. , 2006) . [NAEAIE IS BN H IR LS
Al o ST L, 25 77 AR 5 22 f A ) DR B Ak i M
Ao SR, B AP B R IO B I i il
5N A TR B HE R O, HERR AR R T
BRI Ao AT REME . BT % R R IR
Wi AR AT RSSO A, LS A HE W] 7
RA G E A X 4278 (B 5)  HEBR T A IR A 1T
et A BIFFE 5 R g 1 W] 437 2R ARAE Y I K
RV IR T AR AR TS A N B R AR PE T B3R o 1
il ( Niu and O’Hara, 2009; Niu et al. , 2013; Song
et al. , 2015) . —J7 T PSS IEMIN A A A6 T
TS 73 T 2 T ORF aebv ks v b RV 2T 1 1B — HAORF e
(Niu et al. , 2013; JEERSE, 2021); 75—, 544t
GAE T A 2 e B R L B A1z
TR A A ALIEYE (Li et al., 2018; Yu et al.,
2012, 2015a, 2019b, 2019¢) , £ Hb X 3 -3
1 LLICA S 72 Jot B0 A IR S R s ] B i
F0.65 1) FC3MS {E ,Nb/Ta fEH (18. 1~24.9) 5
EIHHIT (17.5+2. 05 Jochum et al. , 1989) , H.It &
F T #52(8.3 ; Rudnick and Gao, 2003) , i — 15
TR SR TR T M0 (%) 3 3 4 @l ( Yang and Zhou,
2013; Yang et al. , 2016) , B ShEAR B Mg” (HAF1E
1,5 Ml St 544 A A — 25 ( Herzberg, 2006; Sobolev
et al. , 2007)

F R S i, B L MORB i X B
T 4 04 T 1 TR 2R 2 R, 2 AR A Nb/U {H
(Hofmann et al. , 1986; Jackson et al. , 2007) , AW
FERE AR IN R B KB TR A0 (W1 Rb [ Th Ba)
T HE SR ICE (A Nb Ta Ze Hf Al Ti) , HA 451
(Nb/La) y F1(HE/Sm)  {E (1 8k ) , 5 7% 7K i 7K 7
Fes o A b RS A E A G, A TN A 555K WY
Rt ERE RS R P A KIS S, i, A1
] T A R b DX £ 32— U LI 3 78 BT BT
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PN 7R 5 T 2 440 Ma 75T 00 i 21 i — i il 48 2o
PR I, K e o a R N K s
5.3 KERRFKREREREHNREER

HPANE A7 MR W, 93 A G =00 LI~
AT EIC N B S BT R B 2 T3 T iR B R O 4
Fill, R0 BT R R N R R 5 2 0 2 (R
W AR 524 30% H. 22 DAV (0 ki B e £ i A
THIEG=H (E 2d ~2e) , AR SEHT A IE R F2 0
B SAE AR X, MU= AR R 2R U s AR
T, WAIUEE T ARSI UL AT LA — A0 HE T o
T R R e 75 52 BRI VR T A2 i), e (AR i R
A1 BURLE] & B HARHS AT+ S 2 B 2R bk, R RE
AR IE # 8 JE ( Sawyer, 2008; Holness et al. ,
20115 & 3d) ; 4S80 0 A DBk T BHE A 1) 2
BROTA (& 3e) , ARRSCHTE A RS & (Yu et al.
2015¢) o X LELTHOULA Py &5 A6 2 TR 1 ] L B 1) 58 T
W E e, AR TR A KR i #E (Chen
et al. , 2013)

ORGSR A Z 18] T W o Rk
TR AR T PSR XK LG R, Bk (b 342
G AT AR I A0 TN AT TCAS & 7K e s i 4y (
AT A T AR SE) X SOKEUR LR —
F( Brown, 2013; Weinberg and Hasalova, 2015)
TR AR RY T B0 R AR oT 3R A AT DA R 8 7R T
FE IR R H] T DX 7K B0 B K Ml AN TR
R AL T e 18 3= A O 3R R [ 3R R AIE 1Y) J 3
25 (Gao et al. , 2017) , Ab An F1 Or I b3 R X
37K B Rl ORI A o il ™ £ A A B B T — A
A EE 8 b5 ( Pichavant et al. , 1992; Patifio-Douce,
1996 ; Becker et al. , 1998; Weinberg and Hasalova,
2015) . TEFRMIE RIS SRl iA & Pk 2 4
T2 9 2= [N BT B B A A i) 5T 1Y 4 14 ( Patifio-
Douce and Harris, 1998; Castro, 2013) , 1fij i 7K 4 il
D)2 = A A G & B0 8 A8 15 SR 44 ( Patifio-Douce and
Beard, 1995; Patifio-Douce and Harris, 1998 ; Patifio-
Douce, 2005) , AHF5E H A AR TE An—Ab-Or
A PR T UL 0 T 9a ), 5K S i
A AR R — 3,

FE R Rb (Sr Ba YU T2 Z JiUH m AR
A1 i R, T 2 BRI A A S RIS S 1Y)
FEIEAEY , BB KA Rl 5 /K SO Rl e T IHFEA
[] L 091 1) 2 BE R A, PRI A 1 rh o S6 0 3R 1Y) 25
] T X 434 Al L] (Inger and Harris, 1993; Watt

and Harley, 1993; McDermott et al., 1996; Zeng
et al. , 2005) , — MR UL, K BUE Bl R, S5THFE
AR SR LG 491 Y S A, AT 7™ A2 HA R Sr Ba #il
& Rb . Rb/Sr FrAF 04 42 14 (Inger and Harris, 1993;
Knesel and Davidson, 2002; Gao et al. , 2017) , AW
FERIRE L5 X — B BIEAR Y & (& 9b 9¢) , T,
XF B AR Rb Sr S Ba 1 ARF 5 1 40 W 425 il
PLHIAAAE— B FHil , A DOl X Se R br 2 A
HERR Y, 4N Bartoli (2021) 38 i3 X 44 K 1K b4 75 1 B 5%
A A b B X S TR U 2 2 TR
3 B s 28k, 5 A IS K (BT 9b 9¢)
RGN, Fe AT 2 n] LUE i 45 & HoAl il i oo R 48
P 1 7 Ok e [a] 4 Wi 1 3 57 R B O R RR AR, 40
ORI BT R BREA AL, T AR K Rl
BUBIR AR Fu AR H RO AR, Ba Ry Th
5 U BRI 56 R K Bk ml (18] 9d; Gao
et al. , 2017)

LR AN A CE AR S B TR T, FRAT
DNSETY LS AR IIE s A it v ol SRS iy
W2 D1 T iR ZUR K BB o ml, J Rl S BB - B
+Pl+Qz+H,0 = Amp + Melt ( Lappin and Hollister,
1980) . 5 Z AL Rl BIL ) 7 A6 R S 36 14 b i
BT B VS DL RS DA
(Reichardt et al. , 2010) , T 4 45 5% 5 2 g, K B0n]
RN 33 2 5 AR TN A7 TR (R TT REJZ K B T v R T
675~750°C F10.6~0.8 GPa 514 T & /K EME AL
B # ( Lappin and Hollister, 1980; Meclellan, 1988;
Reichardt et al. , 2010) , X5 X P4 i FA DA AZ BTic
SKIEARW G — AU AR K U Rl s B AR R
KB A ( Yakymchuk et al. , 2019; Lee and Cho,
2020; Schorn et al. , 2021; Lee et al. , 2021) ,(AS[X
7 Fsf 391 ) PR B 25 AR A 5 45 o 8 b R Tk ) DA
B Al AL BT R R K BUA R OCEE A R |
5.4 XKPEMIFERANENX

ity Rt e AR KA e X A B2 Il s
PR PR U4 ( Castro et al. , 2013) , FHorf Z A
P Bl PRI REER L oy A D E R &
B[] A4 i 52 20 53 WS OB 2D 3R HE S I X i 52
4 K (Jull and Kelemen, 2001; Lee et al.
2007) o T2 LA A S 22 1 ot s R 4R IR T
ST FTTAR IR G L S SR I, DA B4 50
Kl 7% ) 1 A2 & (Kelemen et al. , 2003a, 2003b;
Castro et al. , 2013; Tamura et al. , 2016) .



U PNEEERAE. RN — R Al s R rh e A B 5 i DA LS A0 R H DA R S 1 37
100
10
&
=1
=
0l E
<
--------- LT
Ab 0.01 oY o SR v -
10 100 1000 10000
wiBa)/10 ¢
100 ¢ 15
g [Lus i1 d
[BPRS: M K 12 +
A W 3 4
~ . L 1 i ”’
g o 2 o1 s’
A SR
% e AR 14 A * % .&;;-" )
[ R4
01k . P
E ¢
----------------- -.<.>-.. o K S
" £~ e - -
0.01 Ll i Fo 2 gty o Pote 1 1
10 100 1000 0 2 4 6 8 10
wiSry10°® w(Thy10 ®

9 Sedb g Mgt - B H LI 3 -7 B TC 5 57 bR AR (R An—Ab=Or = ff11%](a, 4 Barker, 1979) |
Rb/Sr-Ba Elf# (b, 4 Inger and Harris, 1993) Rb/Sr—Sr Ff# (¢, #& Knesel and Davidson, 2002) #1 U-Th [¥If#
(d, EHZ5 A Gao et al. , 2017)

Fig. 9 An-Ab-Or diagram (a, after Barker) , Rb/Sr—Ba diagram (b, after Inger and Harris, 1993) , Rb/Sr—Sr diagram
(c, after Knesel and Davidson, 2002) and U-Th diagram (d, trendlines after Gao et al. , 2017) showing the compositions
of felsic gneisses and leucosomes of Guaijiaoliang-Shuangkoushan arc-related rock unit, North Qaidam

TEFEIR Pl B, SeAL M op R AR o Ay - TR AR REIIMSE 1) S — A KRR (18] 10D)

FRPEIE I B R IE | (A AT I S 2 =2 Wl X A7 7 /D
SERGE (R RE S ok Tt 2 sORT A e R 4y
YRR FRESE 2022; Gao et al. , 2022, 2023) , A
SCHUITAR B B 00 R R A 5 560 R R Z ) A7 A
BB R, YR FICE RS a5 (W
5.2),RET Y 470 Ma 19— Wi 58 4E K 31
(& 10a) o Zi B8 508 5 i v A LR o O Jl X
I I s 77 AR I SR S R AR AL, AN i XD
W AT ER R ATICA R S4B T F 8 s
Ff N A B HERL Y Cnfa N R A IN B R )
(Zhu et al. , 2022) , 7&[ti-FERERE B B, Sedb 2 op
Bl 2% 5 5 22 BAE 5 25 2555 S AE FH A Dy 2 e
IS ZE AL R FERT RR SR T AR AE 2 70 Ma JT 46 (5]
& I S A RO B 958 A HK (Zha et al.
2022) , HZANFEIP R, AT 2 440 Ma BTN K A
T Ay i 7200 e B B, A P T 3 7K b e 58 43

i b A ) ik b e 5 A A 58 K By b 572 114 2=
Ko, 75 B2 Py AS TR R B A vl 3 LA 326 3] 5 K i b 5 A
A B B ( ShR A, 2019) , Ledb 2R i lf f 2 7
AEESEART i 21 i - ok Rl 4 35 28 D7 1 5k B ) b s e
HrEFEt o BB, 5 2 HE M X A3 ek T 465
~450 Ma J¢ 24 470 Ma [ Hb72 RIE FAF (Li et al.
2018; Yu et al. , 2019a) , JZWRICEEIRF bt J99 56} i 9IR
Hb e A, T i — il A 4R A B R T R A
HAERE ST YT IR B BE (Sun et al. , 2020; Yang et al.
2020) , 2 DLAR Fe M 5 R BRI K R Rl ok 3=
(Chen et al., 2012; Yu et al., 2015a, 2015b,
2019a, 2019b; Cao et al. , 2017) , 1A SCK S i A
JBR 7 B4 7K B8R 43 Rl ) e A i A0 b B B, s il
B 04 il B A B 8 DX 0 T i 3, B e 1 KB AR R
i p 537 R s AR PO R B e s AL, A Y
S, AR 2 AR R B B AR A IR T Hb
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Fig. 10 Schematic diagram of two early Paleozoic tectonic-magmatic evolution in the North Qaidam
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