FasE H1 A OA U W ¥ R E Vol. 45, No. 1: 113~122
2026 4F 1 H ACTA PETROLOGICA ET MINERALOGICA Jan. , 2026

Doi: 10.20086/j. cnki. yskw. 2026. 5030

WL ET MR ERE

T R A R R 5 A R

I

LR, YL
(1. EZFMFELE IR, TR S5 F= i 2 E B A S0 =, b 100037; 2. Ho S £ R X S TR S 4T
EEEE, dbat 100037)

i OE: 0 U N AERR R R T R B i R R A B AR S T R G s R R S A AR
BT, R H e R BT 5858 T RST R, 7 i ol 765 76 170 2 Ak B IR R % T sl 7 4
FRERD Y, # Ce™ 5 H,0 WFLFWERT , 757 i A 1) BCE A TR i FH = B AL e AL A A [ Ce,(CO5) 5+ 8 H,0]
(CFIR) > H5R R4 [ CaCe( CO, ) ,(OH) » H,0] (70~ 110°C ) —>#5#4HH [ Ce(CO,) (OH) ] (150~ 165°C ) —~ i B
(Ce0,) (200~250°C ) , /KAERG LEREREE T R I R R 25 A TR 68 H SU WA B IR, P Ce™ 1 H,0 fy3%
[ 5] INEAR AR MR A A 65 IR A5 AR BV AT % Ak A S 1 S 4T B [ Ce (CO,) FIAH  HEUR 55 B
RAGER AT P BRI 5 7 T Ak SR AL AR AR, F O LUK COYT B+ U0 R 45 & R R B R ALK, X TR
WG LU R IR b e i B MEN .

KB A Mt RIREL; PR 0

hE4SEE. P578.6"1; P579 TERERIAES . A XEHES. 1000-6524(2026)01-0113-10

Research on formation of rare earth carbonates: Experimental
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Abstract: Mineral replacement reactions play an important role in the rare earth mineralization process of carbon-
atites, which reflect changes in the environmental conditions or fluid composition during the evolution of the sys-
tem. Due to the close ionic size range of rare earth element ions and calcium ions, calcite can be transformed into
rare earth carbonates under the action of hydrothermal solution containing rare earth element. Under the combined
action of Ce’* and H,0, calcite can be gradually transformed into lanthanite [ Ce,(CO,), + 8 H,0] (room tempera-
ture)— calcioancylite [ CaCe (CO;),(OH) - H,0] (70 ~110°C) — hydrobastnisite [ Ce (CO5) (OH)] (150 ~
165°C ) —-cerianite (Ce0,) (200~250°C). The different binding forms of water in rare earth carbonate minerals
can effectively reflect the ambient temperature. The co-participation of F~, Ce’* and H,O can accelerate calcite to
transform to rare earth minerals. Calcite can be converted into stable basinésite phase at room temperature, but flu-
orine is not easy to replace the hydroxy occupation in calcioancylite for further transformation into bastnisite. F,

OH™ and CO? are important ligands responsible for the binding of rare earth elements, and play an important role
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in the migration, transformation and fixation of REEs in hydrothermal environment.

Key words: calcite; rare earth; carbonate; fluid; mineral genesis

Fund support: Fundamental Research Project of Chinese Academy of Geological Sciences (JKYZD202324) ;

China Geological Survey Project ( DD20242852)

BRIR WO R BA IR AT S A A A 2R AL
— W E26 10% 08 R 1A & I BR 1Y 502
i W, A 10% 247 88 R 5 X
(Simandl and Paradis, 2018) , kR 7% & £ 1+
TCR Bk R A BURR - DR i 285 A B0 7 2 BRA
TS Y 51, 4%, & T AR b A E A Ok TR
(Weng et al. , 2015) , JLF BT A IERIR = #0 w 4R 4
FhRRE £ ICR (La Ce Pr Nd) , Hr L Nd Al Pr G
HBAAWSHE, ERAMERNER - ICK (Sm~Lu)
Bl TR X A A P 5 R B 1% ((Anenburg
et al. , 2021)

M £ IR (REE) R LATERR IR & 6 I B B L
BB 2 Jm Y il s 5 R A KA B Bk kR AR
(Smith et al. , 20165 FHESESE, 2024) . B4 0%
RS 5 Z Ml 73 TC B BRI s A v | 3 BEI IR B |
Fok A Hu g, 3035 ok B AR R AR S TR b a3 B LR Y
ARIEAR . Bl DB G 8 AR i AL 6l 463 I RN 2
M £ ICE TSNS S N AR T AR AR
RIEAT B B/ K TENSEERIR T, 5 A 58
BRH AW 2003 B4 i S BRI R ALy 7T
R BN B« SR, b m] OB 105 A= o6 4 )
TRRIRER . TR SR AR A T A A S A ik
MR ERAR A5 DLORAE , T 2 1 S5 e o Jes 4 23 Bk [
I 1 (380 Bk R 4R 5 18 ( Anenburg et al. , 2021)
B PR A A R e i i DL ) s A ) 2 Sk il
W, [T B P A — S5 580 % K Bl R A 140 ) 1 9
TREGAT AT BB A (RMESE, 2024) o FRBK ST AF
i 1 (B0 BRIR AR AR A 2 Fh . @ ATLLE
Fe NBRTRR 5 3 TP 3 IR 45 E 1 ( Anenburg et al.
2020; Yuan et al. , 2024) ; @ 0] DLl i J5 B3 1
PR e A0 0 1 B A 0 Bl R ER 40 (A1) e
RGBT AN A ) FEUCE TE B (Andersen et al. |
2017; Anenburg er al. , 2020) ; @ 7 LIFE R A
At B e A S R L OC R B9 Y o O IR R U
JERL(Witt et al. , 20195 BRMESE, 2024) 5 @ AT LA
T3 it A0 BB AR T B, TR 0 3R R B 5 A AR
B WV % B ( Cangelosi et al. , 2020) , AT UL,
ToIR TR A O R 2 KA s F b D2k ()

Wi L0 WoT R AR TR AR AET R AR AT
Y n 2 Wi - o0 R A Y AL (B A,
2023),

Ty AT R R 5 h EE 2L A W TR, B
WAEAK LV Cretaceous Okorusu % R 75 5 38 7
fp i 2 U R BREAE 910x107° ~ 1 350%10°°
(Witt et al. , 2019) ; H=58E O L OCR B E
FE963. 44x107° ~ 5 242. 62x 107 ( -] 1 945. 83 x
107°) i R # B 4 (FIRIGAE, 2025), Mt
TCERE A ) 9% W HE 7 fift A7 1) 22 1 ( Lakshtanov and
Stipp, 2004; Gabitov et al. , 2017) , HLZ55) B A5 it
AT A IR 251 (Elzinga et al. , 2002) , JE
onRME U= s e, SR AR
[ (%) LT H K 8 = AN i 0T R 21 RO L 5 45
B XA AR LM S = A 5 S A BB AE 2 1Y
JRRZ —, J7fif A 52 B AR b B b i B R £
Yo mBRTE ARER BE R A% 1F (B an i R oK K R
SRR AR TETT A1 A, ELAS W] 9188 1 iy $h v
WO 7 A s B R A AR IR CL < <F MUY
49N ( Ruiz-Agudo et al. , 2009; BRHE S, 2016; FH4A
PASE, 2023) , BRI A o 8 A0 Y e 409 , R0 14 i Ak
B AL GE IR A, ER BERE S H,0 & = A3
TTFAEAR (BRIESS | 2022) & K A AT A 10 R A
Jea IS L PN BRI A, R 40 e T A M R ik
PR AR LA K5 A 5540 0 b O - DT RIS R R
KEEWR AR R TR X e s 4 IR AR AR rp 2 0
F(F .CI" K" Na",CO% SO} ) ME 5 TFEATE,
DURERN Y53, FT 4G A A B T O 1 (9R0) DR IR 1
(angElhm il ), S 30R 08 2 B9 0 I ( Migdisov
et al. , 2016; Anenburg et al. , 2020; Louvel et al. ,
2022; FRMESE, 2022; #EE AL, 2023; Yuan et al. ,
2024) o SHBGEFAL, KA R AT DL BUR AR
His AR 1Y 23 i O 3 B TCTE B SR 1 M L T ) A
(Anenburg et al. , 2021; [RMESE, 2022), HTZ&Y
IR B S AP, T i 58 5 R G iR 0 PR S 5 A
TE AL, 5 ZERN T A PRI S R Rk A R g v
TR TR AR5 St AR ) — It A4 S 07, X B 45 EAS R
THRB A BB A% R A & ST SO )



551

WIRT5 W LRI W N R R — 7 i 40 AU B S BT o 115

PR (Szues et al. , 2021, 2023) , X L6 J7 i 7] G
SR 22 M 2 0 BRI JF HLAL R J R i b Rl A
T B R ) S0 B A N T

ASCHFE T8 Sl 7K PRI 5 5 A b AR AR AR
FHEZ I H AR BOTRE  (B0) Bk RER 0 T fig
(IR BT AR AR AL A R b Oy g A T
TCEAEH T A B R N, AR SGE I TT
%N 2 SHN SR AF S50, BER T 7 ff A FEAS R K
AL = S B AR IR (F IR ) 250°C) (B TR
(Ce™ F7) M T By AL sk FER B J1 240U, Ce™
FETT AR P AR R P AR AL, DL R e TR
B HT AR T 5 AR R IR SR R R

1 LS ER

1.1 iRF

ASCR AR 32 245 CaCO, (AR) | Ce
(NO,), - 6 H,O(AR) ,NH,F( AR) il NaF (AR) , ]
K B E 25 AR A RA R, CaCO, HHIZ
YT R ITRRATAH . T IR R R B K LA
1.2 KMRREWFE

ARSI TAE AR B 5T 52 30 I 30 oo fb 2% S0 56
FIE, FREC - iy Ce(NO,), < 6 H,O NH,F
A1 NaF 3 BIACH] R 0. 25 5% 0.5 mol/L(M) B A
FH o H AR RS2 55 R FHHE TR AR S BN 25 2%, 76K
IR G e RFEE O, T A3 T K3E LA as )
SHA-2A #5468 3R K V6 IR 5 a0, IR ¥ 3 B2 Ry
150 r/min, 7KL 50 R AL 3 HH 20 2R B 52 )
PEAT RN TR P2 Y AC-100 BU7K B 0 28 T | R
BE M 50 ~ 250°C, 4K F1 3 FE O 200 r/min, FRH
0.5 g8 1 g CaCO, B TN A%, A —ERFRY
Ce(NO,) , WA NH,F 3§ NaF I RTEA 2R IR A
FR W — J5 B B, 78— W TR T Re g m #4 s
1~5h, ARG, K IrE =Ytk HEETF
7K K H Sigma 3K15 A5 BLOALEO PR 3 UK, F 0k
WE R E T S0°C HEA T4 A5 B B 4 R 1
Yo RSk X S Sk i A S (XRD) FH 4 i B
(SEM) ZE43 BT 5 X =y AR AT R AE . W0 AH R
Bruker D8 ADVANCE X ST A7 #1422, Cu K
F N 8°/min, 22K 0. 020, HHEVEEIM 3°F] 80°,
D & = YRE S e SRR TR e B TR R B
RS IER , R 2] SigmaS00 45131 H 55 25 4 fE i W
BN TS

2 R 55

2.1 ERBAREHTHBAE CSETHHL
B 141 g #4595 20 mL 0.25 (C1-1) |
0.187 5 (C1-2), 0.125 (C1-3) . 0.062 5 (C1-4) Fil
0.025(C1-5)M f§ Ce(NO,), ¥R E i (25°C) P
YN T R HIES XRD K, XF He AR A 57 813
J7 il MR BT Ce™ Ve B 1) 38 izt s 2L , 7 fife 41 A
W7 5% AL 1% K B8 A7 A1 (lanthanite, ICSD PDF. 83-
1211) , 7F CaCO, 5 Ce™ W1 BEJR L AH A F] 2+ 1
i, 283 7 KRN 5 5 il AT R, 0 i Ab il T
AiAH B SKEHE R ER T BT R B
X (La,Ce),(CO,) 4 + 8 HyO(Bevins et al. |
1985) . ASZE R La CE , K I HAE 43X
BN Cey(COL )5+ 8 H O, MAS[R)HE BE S50 S i
PRI SEM USRI AT LU Y Bl VR T R A
SR BBIY %, BN A AR T R A 2R (& 2a) Bl
VIR EL R Ce™ W B (38 0328 25 e Ak Ry Kokt
WAL R AR 7= (L 2b)
2.2 BEEUHTHBARE Ce"S5THREL
K381 g 44535 20 mL 0. 025 M(a)
(C2-1~C2-4) F10.25 M(b) (C3-1~C3-4) Ce(NO,),
VRICAE 70 110,165 . 250°C #7370 5 h P-4 XRD
P B VS 7 ek B 1) T, A S 36 v o o 0
LA, YT THE R 70°C B, 5 il A 4 i B 4 FHE
R4 7 (ancylite, ICSD PDF . 70-1774) ¥ 7% |
7E 110°C I R4 T2 WA JF HAE T Sk BE Y Ce™
W h A AR 2 AR iR RS
B SR E R T Y, #ie 7k, (S,
Ca)Ce(CO,),(OH) - H,O(EHEH, 2012) , KI5
FESG & 5 L], 24 Ca>Sr I 58 44 0 45 Bk 8 4l
( calcioancylite) (Wang et al. , 2023) , FEA TAEH A
RAE SR A S, ik B84 1™ 45 46 17 Sk 45 s £ 25
IKERRTRER ™), 52 B JURCKR 2L ROK I 22 B
ZIHARPTEA S RO IR BT = 2 165°C , A 5
0.025 M Ce(NO, ) 5 %W S e A AR SR DL Bk S A
WoNTE BRI 0.25 M Ce(NO,), IERH
J7 ff A 0 e A B T % Bk 4l B (hydrobastnisite,
ICSD PDF: 52-0352) , F2RhkElio 5w ki i) 2 57
SRR TR T RO E WA AL, B 2 U
Ce(CO,) (OH) , FRBRERA R/NLI A ILEAGIK, 2
PR AT BAR BITE S (18] 4b) | BifiZE PR T Ak Tt



116 H oA 0 W o & 545 4

S (cps)

15000 ¢
10000 +
5000

01 (eps)

0

15000
10000
5000

% (cps)

15000
10000
5000
0

32000 £
24000 a Cl-1
16000

8000
0

1% (cps)

I (cps)

10 20 30 40 50 60 70 80

Pl SRR RO P TREALE Ce™ 2 5T A Wi XRD
Fig. 1 XRD patierns of calcite conversion products with Ce™" solution participation at room temperature
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Fig. 2 Morphology of lanthanite transformed from calcite with the participation of Ce’* solution at room temperature
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Fig. 3 XRD patterns of calcite conversion products with Ce®" participation in hydrothermal conditions
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Fig. 4 Morphology of the product calcioancylite (a) and hydrobastnisite(b) transformed by calcite with the participation of

Ce under hydrothermal conditions
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Zeug et al. , 2020) ,

AW XS R TE B TR e A 35 i A PR ) 4
WARZ AR UL, BT R T IR A A A U A &
WAL I B R AR R 43, €L SOT LV FT L OH LU K
COY BOAN R LT R R s MUTTE M £
LAV AR ( Migdisov et al. , 2016; Perry and Gysi,
2018) , Fi LORIRER D W45 it Je 76 T R W A
RO R X T RE R PO 5 T IR IR & ik -A A
AHEAE I EGE AR EAL SE R R i 25 2R, A3
FRREALL S 45 SR R WY, BB FEAR IR KA1 T
Hir 1 0 2R AT DA bR [ R SRR A 8 U 1
iR L JF WA 7y GRS R IE T PR
Bl ) BRSOV ), Ce(NO,) 5 ¥ pH HZY

TE3~4 Z 0], e, Ly i A P i Ca™ B i
. Ce™ B TR 1,03 nm, Ca™ B TFE 4N
0.99 nm, “H B PRI, o BN, Hita
£ Ce™ A H,0 SLFEEH T 24 T RN, J7
fift A1 AT TE 150 ~ 165°C G HH % A6k B2 ik i, 78
AR T 2T B A RS B R A T R R AR A
A TE T BIREAE B, 458 S8R4T 0 29 7E 70 ~ 110°C
ZIER(E 10) . AT WK 2 58 e 0E T 5 it
A ) AR AR B AL, I BLAR i sk v ok
IR RIE S S e T SRR B, ZEAR IR PR e iy
i R ERER D™ WA, K DL ZAS K5 F B 45 R3S AT
T BifE SN BE I T, 7 R R R v 4
IR W K AR R A B R AR 1Y) S ARG



120 ESIR I A 545 %
30000 @ Cal
% 25000 C6-3 15000 -
= 20000 T}
20 1s000F S 1R000 =
= joooo | i =
5 - . al = 5000
SIS N
10 20 30 40 50 60 70 80 o
30000 - 15000 -
o 25000 - . 627 &
5 20000f i g = 10000
= 15000 o
2 10000 ) 5000
who s donaEeSh L
10 20 30 40 50 60 70 80
= 30000 Cal . 15000
Z : 2 [
i 20000 Cé-1 = 10000
= jpoo0 | N i = 5000
o s A SR aRRranCEE GG : . i
10 20 30 40 50 60 70 80
20/
K9 JrfffiqE Ce™ \F R0 R EEAL ¥ XRD &
Fig. 9 XRD patterns of the products transformed by Ce* and F~ hydrothermal stepwise reaction of calcite
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