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Abstract: Electron Backscatter Diffraction (EBSD) technology has emerged as one of the pivotal analytical tech-
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niques in structural geology, particularly in the fields of microstructural analysis and rheological studies. Over the
past two decades, this technology has made significant advancements, with sample scanning speeds multiplying,
identification accuracy greatly improving, and data processing methods becoming increasingly diverse. Consequent-
ly, EBSD’ s capability for microstructural analyses of geological samples has been increasingly enhanced, and its
application in geological research has become more profound and widespread. Traditional EBSD technology can pro-
vide basic crystallographic information such as grain size, crystal orientation, and grain boundary distribution. With
the rapid development of high-resolution EBSD technology, it has been widely applied to identify intragranular
strain in crystals and to efficiently obtain additional key parameters on a large scale, such as Kikuchi band contrast
and so on. The realization of three-dimensional expression of EBSD data, along with the integration of data together
with other analyses methods, has significantly expanded the application prospects of this technology in geological
studies. Since its establishment, the EBSD facility at the Key Laboratory of Continental Dynamics of Ministry of
Natural Resources, has accumulated extensive testing experience, sample preparation techniques, and data pro-
cessing methods over more than two decades. Based on this foundation, combined with previous research, this pa-
per systematically reviews the latest advancements in the testing principles, technical developments, sample prepa-
ration techniques, data acquisition, and processing methods of EBSD. In addition, it highlights several typical ca-
ses of EBSD applications in geological research in recent years to more intuitively showcase the advancement of
EBSD technology. It not only constructed a methodological system for mulii-scale structural analysis, but also pro-
vided crucial experimental evidence for revealing the stratification of continental rheology, the mechanism of deep
deformation and the process of tectonic evolution.
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BTN ER ST A2 A AT WA R A F 25 ) A )
UL ) 45 i 2 5 50 i IN S5 4 1 ) SR, B30T 0k
NFH UL S NS5 0 2518 2 WO S (38 55
2009) o B YIUTHRE T 1) K A AL A G 22 AT R B RS
DR ), B ZH A T 2540 400 b A & 2E B I BB )
SEHMERE (J12 W AL2EPERESE) MR
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a B S RR AT R IR HEAYER (Pass-
chier and Trouw, 2005) . #4 FH YA A Fh AL 158 B
m) I A%k A ( shape preferred orientation , fij FK

L3I AL ( crystal Preferred orientation , fij # CPO) ,
TR W) AR IR ] A RAE (BFR 4 2009) 38
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B, T 75 0L AT 5 (electron backscattered diffrac-
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FEOLHE 7 50 A1 & AR 25 #4 BF 58 (Chen et al., 20125
Sneddon et al. , 2016; K755, 2021) , (L iEAE WG
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BUa A R A B (PRI 425, 2007; B9 AR 4%,
2016) , RN IERE 107 em BAAE5AIE] 10° em 2200
P Y EE SRR T-Be (&S5, 2009) .
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1 EBSD £ AR Mk gt g

1.1 EBSD BRARMEKRFER RFEHN

EBSD TAE &Gt 7 W ks ('scanning e-
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i REUZ YRR PO (2 BERR) MG
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Fig. 1 EBSD instrument working principle diagram
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SFATELE (5P I AR hkL R RkL D)

B354k (Kikuchi lines) . AH4P 44 1 £ 7] B 5 ) 4%

%thl:hjzjﬁz%zﬂz%% (Kikuchi band) , /[ i JE

Vi FEAS— B3 W 2% AiT , TEROGHE A0 i A 1Y

B HUFHAT S A6 AL (electron backscatter diffraction
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Fig. 2 Schematic diagram of electron backscatter diffraction

pattern ( EBSP)

BEAPT T AEAE I R 22 08 2 1 250 1 1k, PR 2%
AABE R I — 4~ DA, S ot A4S Jird T ) B O 3R
MXSFRYE (B°F, 2007) (181 2) @ ad 5 %0 2w
#E EBSP HLXT, Wl Sz 3R bty i (A 23 A5 S = 2 B pm) £
B (Schwartz et al. , 2009) . 8 i3 A4 HEH 1K S &
(inverse pole figure, IPF) ZF &R ARAGH P45 i
PR T | db b BT 22 | SR | 50 55 % 5 K N
AR AE(E ). (Carneiro and Simdes, 2020) .

1.2 EBSD fliX ¥ ARt &
1.2. 1 BARVEREAR TS5 3 ARk J

EBSD i H 2577, HoAE R4 5 Ab B RE T 45
et EEARIAE A o PR T T WO AT S
(HR-EBSD) %5t EBSD (TKD) . By, -3 18 %) B 4%
(ECCI) k=4t EBSD $R %%, UL e EBSD 7EAHIRH]
B 43 B 4 22 77 R R

T SRS ARG T R 2 2 EBSD 20 BT Y B At | 1 3%
SN EHE T . Thomsen 55 (2013) 42 HUBF A7 & AL
R I AL IE A R, B R T WAL
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EBSD R4 175 [B] 43 BRI H A 25 ~100 nm , fi 5 B
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Wilkinson %% (2006) 51 A Y & 7> ¥5 % EBSD ( HR-
EBSD) 45K, i1t B AH I B0 EE 4 B kS 1 L X 7
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23 Ay HEE, H AT R BCAE B & SF i B (field
emission SEM, FE-SEM) [ EBSD #:k , 2 [0] 43 ¢
RO IR E<10 nm, 43 PERIE 0. 06°, A 3R T
555 EBSD Mt LA IX 43 I A% i B 1) ok /N S0t 485 ) 2

PR BRI S B4 1] 14 45 ) A

BT EBSD, s Y 3 5F 25 W A7 5 ( transmission
Kikuchi diffraction, TKD) ( Keller and Geiss, 2012;
Trimby, 2012; Suzuki, 2013) , /20157 44 K 4544 i) B
RER . 148 EBSD (453 HE3 2 BT AL 77 R IR Y
PRAL (25~100 nm ), XE LR H 0 505 A9 99 K 45
FAPEE (CEY SRR ST /N T 100 nm) |, 1 TKD # AR
25 (A3 BER TG T 10 nm, BESHR TR SC 8 | (il
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FNG S 8, P B AR O 2 % TR R B
AT LR AU R R, 7EAE fAS [R)R B Ah 2 58



LR

AR TGS (EBSD) BURTEHBT-#WFFE i) B i 161

(AT 04T s X F/NRUBERE &, T 45 A (1
it B AR AR B T (FIB-SEM) , H B T2 2 1]
E), FEENE 2 JE 4T EBSD FHEMIGK, B AR A )
G FEA W E TS A R DI E BV TR SR
fhRTFAT, HAE T EBSD B R4, @it ERE
SRAE EBSD £ 4 1% 8 8 1 26 X Ao #&, vl DLAE
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JEE BRI, Bachmann 25 (2011) 57T 2D & 3D il
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FREAEAZIE 43 M1 403 ( Britton and Hickey, 2018)
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) SRELAVE A P S R A o TR [ B8 7 72 A 3 T 3
AT R Z) 1258 EBSD X I A BUR (Schw-
artz et al. , 2009; Wilkinson and Britton, 2012) , fii i/
JH HR-EBSD A 2 2] 5 ity (< P 35 o7 28 i | AR A5 B
RSB0 1 & 147 24 B ) 2% 18] (kernel average map,
KAM) (& 3) (Wilkinson et al. , 2014) , H,Fi#if
o BE AR T 5% A R4 v 1 A )
B, AT LR T fife b S B A A T AL
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3 AR 22K (BB H Dingley et al. , 2018)
Fig. 3 Kernel average maps (KAM) (modified from Dingley et al. , 2018)
a—FRAE R F AT WO I b— M AR B 73 BUN AT
a—standard EBSD; b—HR-EBSD
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Fig. 4 Directional sample orientation diagram
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[l — A DA B R e KN R I e PR AR S
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K5 Ak EBSD 4528
Fig. 5 EBSD result analysis diagram of quartz grains
a—fK3IE GOS L X Z3 FRIESURL FITE 45 (i JURE ; b—SURLIR 1) 5 4L A -4 B ) 22 ]

a—separate parent grains and recrystallized grains based on GOS values; b—grain orientation and kernel average map
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Bl (22) 434 k%L (ODF) 4§, MTEX &% T Mat-
lab J¥ 4 B —3CF I H A 9% 19 T 5 2 B4 20 A A
Y] B AR A R Z2 D RE T B, Al ISR A R 1)
% JBE RRVRS AR T AT SR P DI BT A A%
4 A5 B4 ( Bachmann et al. , 2010, 2011; Main-
price, 2014 ; Mainprice et al. , 2015; Rafailov et al. ,
2020) ,

XFF U 38 AT LA AR R RS
PWAE B, JF7E 3D T H h kA7 gk 5T, 4 fn i A
MTEX ( http://mtex-toolbox. github. io/) ( Yardley
et al. , 2015) | f AR PT #% T. 2 ( Britton et al. ,
2010, 2013 ; Zhang et al. , 2014) 5 55 4 5 2% A (0
2ER A3 AT A6 Dream3D ( Robertson et al. , 2011)
AR A5t EBSD s Ak 3 7 15 1 22 1) s S 50
B RIZEZE (5% ~20%) ( Goehner and Michael ,
1996; Dingley and Wright, 2009) , Dingley Fl Wright
(2009) #2iH T —FpET EBSD $dli H 2 3D fhikss
RT3 2%, R i 232 Bt A R FR R | 008 Dt iy
i MBI HERA
3.3 EBSD #E&HHERU

TEHTH W) BIRTSE Hh i 5 200 AR S8 ) RH T e
TAE, R X S ATSE (XRD) HoR HAENE 74
BRLRARF K (>10 wm) BRAT Y (Al et al.
2022) o XTGPy AT HEAT AR S O e
SR HE S T B (TEM) , {H33 5 i B s
DA it ) 1 2 B AR R A2 % T HT RE SRR 2
T PR UKL A 5 ( Dinnebier and Friese, 2003) , Ifij
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RH M) (Li and Han, 2015) . AK$EIXSEILA T # | L
T EBSD AR T & (WL T 0 A J0AH () A7 i 2k fis A% 1)
mnRSE R AR R UE T AT 50 T 2 (Han %5 2018) , 1t
Ah , EBSD B A X AR XS 1 i J w2 o A 0
Han % (2018) F| FHXT 463t 4005 A8 ikt i 1
IR ARAE T8 A A AR FR A P4 5 MR A A
BT AR, S5 R R AE AR T (R
7 EBSD BExCRIC A4 oty ) , M E 2L (a b o)
FIFIXT 22 /N F 0. 3%, Sl LS ARXT R 22N T 0. 3%,
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Fig. 6 Schematic diagrams of EBSP Kikuchi
a—HA 9B (S5 H 1~9) M5 A (FRIC8 B~F) ;b
o d e f—S Y A0 i) A S T 6 8 T A L) AR 1) 23R
T a PRI B~ F
a—a schematic Kikuchi pattern with nine bands ( numbered 1~9) and
five zone axes (marked B~F); b, ¢, d, e, f—derived reciprocal-lat-
tice planes containing all their reciprocal-lattice vectors, belonging to

the zone axes B~F shown in a
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Il (ODF) \dki B s A (GOS) (I Ik 22 f1 3 A1
B (KAM) &5 674 A D7 ) i) — 4R Ak, 911 a0 )
PRI A% T ) A2 A S RV AL (] 7h) G
7 2k R AR i I ) B ) 28 A il 2R P A T R —
Y 5 EC R 5252, 10 R 18T (R R P8 1 O
2, K EBSD 35 B R A B ) T ) 0 B 4
ST B — B S T L T Y 4 R
(Kl 7e) s i AN FFPPBRL R 5 e R IE (KL Td) |
Y] 26 £ B A A B TRL 0 UK 01 S 43 A P B AL
LA ] 3D-EBSD 43 A 5 g Ak AR A 7Y = 4
W P45

EBSD HARFS 1Al LIX BT A it A A7 I R
58 (ARSI o T A7 ML 352 1 i i 240, AN
7 AR B R R AT S AR BT LSRR T EBSD
D) o H 52 0] 5 b fi 135 RS, T EBSD 2548
B A S IO A A i e T S B A Sy SR, T
HOIR X M I T8 A 1) B 2H A B B Y AR B AR
(2009) TEE5 5 v il = B0 F0 520 25 2R 1 Bk |
SN TR SR ) e~ b g DU B T4
P ZFVEIE S 1F A 45 A0 98 KA MR A7 | B R
O AT AT & LA 5E IR OB U ) A ) A 26
TP N R AR 2 R0 P SR S5 K T A
2 i TR I AIRLRE R ) W AR R AR LA
Ly ikl G A sh oy = I B ALEI 5 . TR
EBSD 45 59 4148 S A5 HE AR B R T PR BT I, 5
TG e R SR AR | XU 1 R A A R R
LS W)L FAE A I R 255 40T o

a3 b, I 2 % 0 [ b 3k 4 B4~ R AT T A g
EBSD HORAERE b B 1T H AL A S A BT
[ JE P A1 98 B R 48 ( Passchier and Trouw,
2005) EILIRIE (Law, 2014) (8 3)2£ 46 18] (Pass-
chier and Trouw, 2005) F1iz 8% i & ( Xypolias,
2010) 5] (K 8) , W 5 HAF AR TBUARZS 5 LT
JRSE 2 BORIESE, 405 R A BRI A4S 1) 45 1) S | 9
YeRBELS &, WS4 ) S ™ () 2 IR
B2 £k MO MRS eS0T A5 ) 1 MU BR IR AL 5E 1] HE
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Fig. 7 Quartz EBSD analysis result images
a—T YA B AR I GIRT; b—0 W) A B — 2k SR L A2 Al B RV AR IR I 5 o— 0T W0 — R B AR IAT s d— AR 50 64
HARRFRR
a—inverse pole figure color map of mineral deformation; b—two-dimensional lattice orientation variation on an arbitrarily line and cumulative

variation curve; c—pole figure of a specific crystallographic axis of the mineral; d—boundary relationship map of different mineral grains

GITTTE B H 32 45 1] 577 (Almqvist and Mainprice,
2017) , LT T BRI Y S IAE B . S EEA
i il i TR S SR AR 25, R BIE S Bk A B A ]
TRIEAS AR 254 B9 Py B FE A Z AL (Prior
et al. , 2009) . FHIF ARG &, AT R4 i
28 A NCIRS S R 7/l b ve e R - 2] NS
BLHISE, B EBSD Aztec RZET 923 EBSD 5%

(S5 T) IR L RAE R, X (75 EBSD 7&
BT ) B MEA ) 1Y) BRI S T IR A ]
oAy IRRL IR /N B8 A Sy i AT I X LA G ok X R Ty 1
JE , T EBSD 5 RE T 19455 W n] 5] Ah X — B FE (Ma
and Rossman, 2008) ., EBSD it n] 5 [w] {37 2 JF A i) 4F
BORMGE& , DIWEFE I b i 28 T S B [R) 62 3R
Ak, BT RS TE R (&1 8) o
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Fig. 8 Target analysis minerals, types of produced data, research topics of the EBSD method and its application

scenarios in the study of geodynamics

M2 WP 8 FIf R, EBSD J&— T LA R 25 1 15
RO O T-B, vl 5 HAh Z I AR X 454,
HEMATA: 8 — RS AT S RE RN 7 [l 1) b 527 7
2, HLFEE R AW 2 | w] i RS B2 A0 4 kel 475 7
Ky At L, IR, JATHE 7 L8 4 S B iy
T A FERE L, 51025 1Ay A N FH 2241, S H
& T ff EBSD W 422
4.1 EBSD 5 REE & KB 75 E 8N A

FIFH EBSD $2 RARZS 55 4R 1507 W 1 i (AR B ]
T ELAT R DA A AR ) A 9 T L A i A 7 AL
T HE AR IS R X S AR AR (R B R YA
TEALHI R AR 2# 5T LA A7 A9 A AR B ) 38 7]
VIR 5 30 A R [ W B 45 i G & iR T
PR A I A 1AL, L RT DU R B A ) A 2 A2 1Y
AR, R RS A AR AT e (K18)

mm AL i 1) A7 7 AT fiE -5 30 AR A o 55 T Y
Ao PRI UL A T A A 2 i P P 35 4 e 55 T8 ATk
AT BETERIPE ALY S A R0 e 1) ok 2 b 4734 o 2 1Y) £
4, EBSD FAR AT LR 2 A JEX S (Zhao et al.
2017) o XF A6 < 5T BE A A v Y A S R BEE AT EBSD
G3HT R ILIE 5 XL A BEAR 5 % B BRI 3k & 2k
TR {2} JUPFIEE THRKREN S50 (-5 JT
), HIEZZM {r] JLPPAT TR 1 (300
M) (Menegon et al. , 2011) . &S5 X &k B A7 7E A2 17F
TFEEBE RN, FRBEMRE <a> (A2
IR FiB T {7} <a> B {77} <a> (25

KEMXE) W& (Menegon et al. , 2011), It
A BT EBSD BFGE TAEZR B, BT IS N A BB
K5 ARRLIY ¢ BhIa] A E ) 22 823 90°, I 58T AhokL
JEEE P TFD {11221 Bl XFRIR T H AU B A
£ (K9) (Bestmann et al. , 2021) ., FH ik, WA A
B (IIEISOE A AR AE) FEHb7e i fh B PE AR
Wit Rl fe R HEE ZAE A R G A0 E A
TR BER A A IR FEZEHLH

FET EBSD £k Az s i AR B [ T DL R
W 1] 3% 228 T At R AE , 3k S8 AR T A Jr 1) 9 - 42
AT LU VIS s, thiz sl 4 sk i) i i
S, HLZet e IRl Y S AR Y 5 A
YRS 1 A O AR J LRI T AR AR 5 A s, T A 2 TR TE Y
B¥ & (A 10) , Barrie i§f§(2008) 38 4 1 IR )
th {001} <100> EHKT B EZBB R, it —2
e 2 5B R AR R s = s L R O A
(CPO) FIREH TAELE AN A X FRAFAUE B &R |
PRI T AS 5 2 von Mises 1 U], G4k JE B CPO # %,
Reddy % (2007) X725 45 4719 EBSD Z3#r & 8L, 722
TEBS AT A AR I B 2 5 074852 [ 100] BT AE AL AR) IrT
J7 T —F, X AL R AT RES 11001 <001> 1
RIS XS A SR AR Y DX B N i B
Wra B, A8 T8 5 2 0l 5 70 B B 2 30 [010]
(001) s HRGER 5 T30 [100] (100) F1 [001 ]
(100) ¥ 51, 76 & N A A E 43, T e A7 7E

(111) ((111) A 112) mdkE & A /[ 1107 7 1)
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K9 HAMS EBSD 45 R EE (B2 H Bestmann er al. , 2021)
Fig. 9 Schematic diagram of the EBSD results of Japan-Law twin ( modified from Bestmann et al. , 2021)
a—BYYJHT Hh e 8 RS 3B 40 BT SR <e> BlTE) A B M) 25 R 85° 5 b— AR T JUART B 1) 1R 2 T R ) H AR 0L it Xt R S 50 7R 7 TR
a—-<c>-axis angle of 85° between porphyroclast and part of new grains in the shear zone; b—Japan-Law twin symmeliry test for clast

orientation and part of new grains
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Fig. 10 Geometric model and stereographic projection characterization of grain boundary dislocation slip mechanism

(modified from Reddy et al. , 2007)

a— X FRAR AR BEMUREA SR T b—R B R T, o T S WA I RS T 1] LK el T B R A RIS O = L
FIRE; c—a BRI/ W RHSLABOE K TEMRM AT, MRS T W RS D7 1) FURERE AR L3 B, B i iR S RS T A & 1 5t

TSN 5 d— TR ZRHERAAE A T B WSS HERE 4 /NI A3 A () ST R0 ]
a—schematic diagram of symmetric low-angle tilt boundary ; b—schematic diagram of twist boundary showing the geometric relationships between the
boundary wall, slip plane, slip direction, and rotation axis and dispersion angle due to dislocation glide; c—stereographic projection of the boundary/
slip system shown in a, at low tilt magnitudes the slip plane, slip direction and rotation axis are mutually perpendicular, and the rotation axis and pole

to slip plane are contained within the plane of the boundary wall; d—stereographic projection showing the dispersion of linear features A and B

along small circles around the rotation axis
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W, XTS5 A R B AR AR IE 085 A 1T
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FE 5 AR S AR L 2 i B AR AR R AT R, gt
FM TR AL B 5 4 PR3 EBSD 4R1R 1Y
PEAEEEAY (Faul, 2021) , ik, EBSD GEASHH X
AR WSS NS T A G A A5 454, X S 4
RE 530 7P AUk A b A T3 0k, N &8 (Faul,
2021) , Wallis 5 (2018) i =43 B B 15 HU
it (HR-EBSD) $iAR G 3RAE 1A 980 f ok 4544
B LA 57 8 B T A D AE 2 b b A o7 B 45
Fa R SR 2 ks 3 R PR A R PO R, — A
Bl {ml [e] TDAMEEAR, n—dH EEHHA <

[a | A ¥ B

>Burgers [n] 1 75

M5t SR EBSD J7 X6 TR b 33 PR AR
EIPRE TR SR 07 T R WESE, A B TR
AL iR i R A W) AR T ATy, BRI
PG ERI M 5 1Y) EBSD 5T & I, SR A0 1Y) 43 A
TR e B0 38 78 o b B iR o e b ol A AR
EBSD 25 R385 7R S ME AT 1 23 SOV (AT — 32
A+RHCAT £ N AT BB A7 —RHE A I HOR G
AL 1) T CGEREAT) BRI AT —RHC AT 06
ORI U 32 A A 27 12 1 R A 2 35 A A K
T BT SR IR RHC A B A AR, BT
HAMMPI SR (Zertani et al. |, 2024) . (B
A1) BRHEAT — RHS AR JUIR G 5 9 i — 2P R
HOE AR R A G HURE T T S R S B
PR Jo 3 AR b A B O R T OC | i A i
A A TR R B iR 1 AR A X ol R U i A%
T AEHE T IR 3 38 Y R S AR R R OEE A Y 55 Ak
(Zertani et al. , 2024)

50 pm

misorientation [°]
i

Bl SR HOIRE A S RS I BT T O AT (EBSD) 0 Hréli R (1B A Zertani et al. , 2024)
Fig. 11 Resulis of EBSD analysis of vermicular diopside and parent omphacite ( modified from Zertani et al. , 2024)
a—W PIAHIE; b—S B (Z JhJ7 ] 1PF-Z) | Aebmfli oA anZe B s s c— DA HR ) 22 &

a—phase map; b—inverse pole figure ( Z-direction; IPFZ) , the sample reference frame is given in the upper left corner;

c—misorientation to mean orientation ( mis2mean) map

B X AR 2 TP S A 050 1) A DN A A ) 4F
RIS B A 1 S AR I ) A — 2, R [ 001 ]
AT TR, (010) A1 (110) T 0% 5 TE il 3
T B FRAT | 22 AR R A DT IR i AR S K
TR B, AR T AN A (Rehman et al.
2023) . SRTTERMEAT FI 43 2147 ¢ B AR BEAL S AL
e, AR SR A 40A [001] A [100] il 5400
A [001] A1 (010) Hh & WAEFTHES , [l 5 55

PP PR AT, X R EAN TR CPO B A F A&
[Nt & A2 (Bukata et al. , 2024) . #F— 2 HHF5E
R P FLT DA A R A TR R A
L, HARHEA ) CPO AT B 17, A 4 A i
487 17 1 R G ) 5 0 s ) SR T Y [R) AR
— 3, X R WITENM wpEREE b R ZE AR AR R R 2
PERIE A ORI METE ALY (Bukata et al. |, 2024)

X Sh R Ly AR e e P Y S AL
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W9 R, R ANTE B B2 55 AME A, I &
A S A AT A U TR TR Y PR = B RTRHC A
B RN, HL S TR SR Bk Y S BT A E G R Y
FRAUEHASARY {1010] 5B R (001) FAT,
A e S BBk [110] 3 [010] J7FAT, 3
XFAR e A AR B R Al B LR (Dyck and
Larson, 2023) , #id ARG AWK AP AT AN
PR 4 21 A 1Y AR AR B ], & AR A AN (] X
EL041 CPO I SPO H55E Al , X R W & 41 A1 A M 1Y
THOMLAE R AT DL Sz A 18 A K 7 rh s oy
BRS04 (Kohn et al. , 2024) ,

4.2 FHARBRTFERBRUYMEATHREER

iR

AP I E e M A2 B 2 EBSD B
W I EE R R 22— il T B B R R AT L
H— S E B 2 17 &= Ak, il 40 Kearns A F ( Gruber
et al. , 2011) . J-index ( Mainprice and Silver, 1993)
A1 M-index (Skemer et al. , 2005) , F| FH &%l i 25 K
Heat A BUE AT DL SE AR TR 3 2l 2748 1] 43 H , % 1
ASTERR L H e AR A, AR 1 R AV
SAETR b ARSE A 2 R L G T R A AR TR
(Vernon, 2018) , 3 ELAH N (4 & Al g ) &8 F — 2L,
FERUEFAE CPO ( Schmid and Casey, 1986), X264
SRR AL T8 5 A 1E s 2 IRy MR (7% 42 350Rn 17 34,
X i Ak Ry DLIRAS 58 T A 5 I i S5 R AR TE AL
%15 B (Law, 2014; Faleiros et al. , 2016) , T
EBSD H AR JEARIGX 4645 B HE A F-BeZ — (Fos-
sen, 2016; Hunter et al. , 2018) , Wu 45(2023) i1
FIFH EBSD i A0 AR 1% 3 1L A BE A% 3 D) b A
c SHZHA Y TT A1 (OA) R BT Al AR 1 28 I 1) Uk 2
(& 12) A5 R [R5 U047 2 A2 R EE 29 2 500 ~
550°C FESIZ924 0. 56 GPa (1 £ N A AHASTE 25 144 F
TE LR, IF45 6 DX I BT 5t 4 1 J0 AR % A4 5
UL RS e 1 Bty A AR i 1 13z 3 40 1] F e
M AR AR R 5 BB YRR R U A (Wu
et al. , 2023),

T A AR 1z g2 E i B TN R ) )
AL PR R OCH B { RS IE MORAS 2 52 42 (Rl il
s AR, T R A GBI G R
SYYIASE sy YT LT L as s im i (W) 21k
( Tikoff and Fossen, 1995; Xypolias, 2010) , EBSD
AT A Ay 0 2 R 8 A T BB A 9 ) T 8 0 B 2
]2 R (B 13) (Xypolias, 2010) . 47 3% 1

EBSD 4l , 38 2 X6 At 58 Hhmg Rk 4847 1L RS B A
Fe G BE b S B U ) W, WIS, R IR Z2400%
TR 2 it 2 R 2 B 1) W A 22— B LD % Y
PASRHIE (P45 T0%2E5T AL ) | 3% 5 7E1F 228 i
At RGOS B 1 2 B AR 5 D) 4 i (>80% )
MIZE BA—3C (Zuza et al. , 2024) .

4.3 EBSD UEF 4 & A B35 R X # A 5 4 Bk

HIFRTE

FIF EBSD HARTT RS I 44y it 9 L 742 R AiE A
FEAI & 5P N AR BE R T2 A A BRI 5E T 1)
(Field et al., 2010; Wright et al. , 2011; Taufner
et al. , 2023; Briickner et al. , 2023), # ) UL #Y
FAE SR ARL N B2 Y S H S TR R T SR AE S N
S ) 8 MR AR Y B BE Y grain orienlation  spread
(GOS) . grain average misorientation ( GAM) %5 Flli#
HZRAE i X JR) B A% 98 1 A8 I 5 FE 1Y) kernel average
neighbor misorientation (KAM) ,misorientation to mea-
norientation (m2m) ,

(R IG AR 2 R B E A, AR T AR A
Wik (Stipp et al., 2002; Passchier and Trouw,
2005; Cross et al. , 2017b) o XA A AR W)
B3 BRSSO I E 45 O — 1 L Sk TS A2 Wl B i B Y
ROME L (Xia and Platt, 2018) , Cross 5% (2017b) fi#i
J MTEX T.E.%8 # i Voronoi 73 fift 381 ( Bachmann
et al. , 2011) , \J5itf EBSD $di b B X 40 T 04
B IEURL N 3l 285 B 45 S BURE (18] 14) | HEEAS JRi B
p  FRBE AR N TR TS I AR B T R SRR
RN B 8 S RN 8 o, T ) 285 B 45 BB 5 TN 1) 722
TEAAXT 8255, W) & 9 A0 48 %% B 42 IK ( Passchier and
Trouw, 2005; Cross et al. , 2017b) . fii f§ MTEX T.
HAAHH GOS 284, 7T LU M bR o & N S8 PR A2 B
54 85 - X3k Bt U 5 445 A JURE, X A [m] 14 22 B
B SR YT 55 GOS [WE, 5% 5 0k: i T &
WA AR, H GOS E = T 1B A, 3545 i UKL i Y
IR 55, o GOS (E MK T B ( Cross et al.
2017b) o IAERIZTT B TAEHA TR A A 28 i
(Y2210 7, E RIS I X (%) b 5 58 B2 ) T, 461 40 7
JFYR S R (Zhang et al. , 2022) FllEE K 0] Wy 24y
(FMIBERAE, 2021) AR ASS AR, TR ST
Xof A8 T S AR AR BN A1 A DT JRRS 41 EBSD 41
BT, T SRAT A2 T AR SC B A5 1 ik T 3 o RO
MR 33t 3 $858 B Hs Rl LUK Z 408 1) A )
EBSD 73 Bt Rt AT i A5 i HLIGH X 735k BE R
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Fig. 12 Equal-area, lower-hemisphere projections of crystallographic preferred orientation (CPO) patterns of quartz
matrix grains in the mylonite (modified from Wu et al. , 2023)
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Fig. 13 Schematic illustration showing the variation in quartz
CPO sfabric keleton with increasing simple shear component

of deformation
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Fig. 14 Schematic diagram of spatial distribution patterns in crystal plastic deformation and dynamic recrystallization
('modified from Cross et al. , 2017b)
a— B (IPF) S Me TAa il (GRET M) 09 e ARERI 2040 3 b—A NIt A 5 Rk A S35 B ) 2 [R) A 7 A5 B 25 18] (m2m) |, HRER R
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a—inverse pole figure (IPF) map showing crystal orientations with respect to the shortening axis ( vertical) ; b—map of the misorientation between

each pixel and the mean orientation of their parent grain (m2m) , black lines are grain boundaries, red lines are Dauphiné twin boundaries; ¢c—grain

orientation spread ( GOS) for each grain, colored relative to the GOS threshold (white) between recrystallized (blue) and relict (red) grains;

d—GOS-separated recrystallized and relict grains, twin boundaries have been removed

B 2 B b LA F20 A0 A i A L R
AR 5 S I A S T A ) A A O Y
RE T, I 2515 4 B (0L 1B 2= T P9 A R S 160 0 1 e DAL
R T BE RO A5 , 15 HH SRR H RE A O AR

XoF A7 PR R 240 L A 1 A8 23, R LA
T 2 B A A I AL i R B HE R A A 1Y
PRI 2L 1, X R a0 P i
Ki4i EBSD 24T | 22 0 73 73 A A1 A2 2 FEAIE A4 5 4L
PR oA RO TR IR (A S AL A2 i
AR ARTRIME S (SOMEO AAT RS Z ) (Tokle
et al. , 2023) . TXFEERABT IR BT LSRR B -
Wi AR T AR HE 5 TF e 1) EBSD 5% 25 31 W | G i
AL AR DT BT 3 26 5 Ay r 1 T A2

B IF s BN S BY SRS DL e I n] , 5 I [R] I A7
BB A DG AR TR AL SRR AN K H N b A Ok WL
BN R B FRAL 743 X, e W 97 HIUIT 722 2 ok 8
TG A H e A 1 R ELAZTE L] (McNamara et al. |
2024) . EVERHLINTR R FE A RIGL R R
B ARGy KA, W W58 AR 18 R PE T
EARD A5 R GE AL W R T e i B R PR BT 4 1 v
AL s G S (EBEERBTBERS ) HUB W4t
o BRAE PR A Al 0 e )RR BE 25 R T, R 8
T U A T S AV i~ DORE 22, TR AE S
HIRIFEERZE (Bickert er al. , 2023) , fEAEIE LR,
BORL A W A1 UL I A7 T IR A, /0N 8] B 0RE 78
JEIFEITCTE , TG T 0L ROST 1 sl | 5 35007 A8 7
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MR A R G R 2 )= &
A TNGERR R BRI (Bickert et al. , 2023)
4.4 E-T EBSD #iEMHE K ERFIENS
PO MRS R B T RS AT
Y AR AR T 6 (Almqyist et al. , 2015; Almqvist
and Mainprice, 2017) . fEH FHLFE , RHA AN A
MR BEAR BA T E 2R % 10 F 504 (Tatham,
2008 ; Lloyd et al. , 2011; Ji et al. , 2013) ,Tf7E 3
e S A ) SR R O A R A R
#¥E 47 ( Mainprice et al. , 2000; Vauchez et al.
2000; Jung et al. , 2008) . ﬁ%_ W HERT, 1_%
K I SR Y R AR SRR R B CPO , S 80 A [
A I B W B S0 45 1) S 0 LR Ml R e
£ 5 PE (Vonlanthen et al. , 2006) . Kt | 38 )
M EZE AT Y CPO ﬂéﬁ’&??‘i&;ﬁﬂiiﬂd&éﬁi&
RS 1) SR RVRIE AL (BT SCAF, 20125 Ji e
al. , 2013; BOKMEZE ) 2019) , ¥4 4 4 2044 EBSD
ﬁﬁﬁz’“ A5 ) S P RO g AR O & SR AR 2
A DATR N 2 b 7 0 45 1) S P %) DR 3 i B A

Pt 255 (Jung et al. |
Cao et al. , 2021) ,

FH 3 F MATLAB “F & & B9 AnisEulerSC
BAE (MR E VAT R A 45 1) S ), BT A
PLEA MRS 20 YA A R A S, %07
T3 T S0 O A AT A A R R LAY, O
AT A AT A Ak b R R R (Kim et al.
2020) . EIZITIEVESE KB P A 1) M ( AVp)
R 8 i A DA = B 1 1 o 8 B 2 i A R A
AT FE AR IR, I RE N A SRR (CPO)
SR PRGN R R, 2B R TR N Sk A
T A 7 7= A A R b R A% ) SR ) T A R AR
o ZE50 0T Re R Tl A0S BRI iy h i R
-V R R A H T H (Ou e al. , 2024)
BT 43 FER A M2 B TR R S A A
4,00 Vp Vs Vp/Vs AVp BIUIIE /03 (AVs) 3R
FDFFRPE DL B P sk S I S S R A0 Ok X431 e
WEPIMRES MNE SAMTAARSE RS
B B AR E (B 15) (Cao et al. , 2021)

2008; Wang et al. , 2013;
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; i ?0 1 1.66
1=2.158 30 P1503-6 2 (,5 45 Lse
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GOM schist 0.5 .-\\p 6,42 Max, AVs =4, |1 A\m 3.59 171
75 59
| 37 38
¢ PI507-4 5 15 65 3 57
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N = 20071 10 Pl-poor .8 330 53
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: 62
& . -
d  pis507-7 \ |,2 1 |;3 ' I ! .
1=6.641 10 P1507-7 BTy 13
N =38495 2 Pl-poor ’ 55 :
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J=6995 N R0 P1507-8 X i
N=97421 3 Pl-poor WP « JHA _
Pl-poor  § 4 GOM schist - I§ -
- . 2 =5
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Fig. 15 Lithological control of mica CPO and seismic anisotropic response in samples ( modified from Cao et al. ,

2021)
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a, b—CPOs of phengite in the Pl-rich GQM schist; ¢, d, e—CPOs of phengite in the Pl-poor GQM schist; f, g—bulk-rock seismic anisotropies for

Pl-rich GQM schist; h, i, j—bulk-rock seismic anisotropies for Pl-poor GQM schist
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Zhou 55 (2023 ) TE X 7 6 e it g 10 H e D) e ¢
R B WA N Y U0 I B K CE ST R R
EBSD X {15 Wi 217 85 i 190 9 5% 72 1 14 £ TN £ T i
K& ANZHAG 3B, %0 HFEA T M e e J B3 45 Mk
AN Y TS T HL5E I H R A 1 S (P
HUS W) XS P AEIR I B A AR TTHR , 1P 5 U1 Y
P8 77 1] 5 P8 AT, BREG A i A4 A 24 R0 5T 1)
Z B TE S5t 5 A A A BV Al — DOVE B A8 A G, X
TFSE A 18 A 5B T Ve MR A ) S R U
FRHE TP R
4.5 EBSD HifESHMITESWHENEKEER

EBSD 75k R FH I 5 L 78 AR 4 ) 1 R N 78
B RAET N TR IE 22 5 F PP A ) AR I X
Yla i 2K 22 B A0 (Reddy et al. , 2007) ,
20 W HA 545 0] AR DG B T AN 8] b il i A ] 7
P HR  EBSD BUE SR T8 BE 3 A b i R
— A AH B (Martin and Jonas, 2010) , 3325 10
4B AF X 4 BT 41 (Phillips and Ji, 2021) 4% f1
(Condit et al. , 2018) 8 (Gordon et al. , 2021) .
WEKA (Odlum et al. , 2022) FIEET" ( Fougerouse
et al. , 2021) SEH W) HPRLIN IS K T R 43040 IR &
BB AR TE X W ST R Y B R, BT
XL YR UL U-Ph EARET ) BFSE L e 28 K
TCER S0 A s E Z (8] 109 56 35, A Bl 128 J A7 0 4 45 48
PRI A B A R

Enami 45 (2017) & JH EBSD ZH#49 43 H7 Rl H ¥
TREF LT 30T (EPMA ) J5 i, WA 18 A J0kE 19 A=
K it 47 TR SE , EPMA J0 % #5741
TFARITAE Sy 5 A K {5 EBSD 8l 7R A1 1
AR K -MG L5, 3 5 B JT RV S AR e 75 — £ TA)
AHBY B, PR A B 73 R B b A T AR AL
HRZ B AR TP b, A T BT Z2 B B A KB
EBSD Jy At A Jm A i W i s i SR e T
AT IR THOK SR SmAR TIE R FIE i B, 3% 26 1 hy it
SEAEM 5 A I ARSI A R R Ry, O L IxX 28 B i
it & B WA E SRR R R M5 A7 U-Pb 4R A W)
G, 22 W b R B 7 AR T AR sk B PR 5 VA A -
VE , BT N B TEURHAE [R5 3R 43 A R AE PR 4
BRFE (B4 28 A AfORL ) 2 T AR Y e
(Mottram and Cottle, 2024) , 4411 ftoki A9 S 1R 48
PEASIE 27 Az /N BE L B S B8/ N f B i R —
ST IC R, A FE Fe Ml Ca, X UF A TG R UG 45
NP RAETY BMELE (Verbeme et al. , 2022)

Taylor %5 (2023) i 1 XF >k H Wildhorse %8 £
AT EBSD G40 534, Wl 43 A e ) Ak B B
AR e /IS B B BA RO A SR LI A R e e
S5O0 EROEET 454 EPMA RGBS A% 317 1Y
ERBAYET Ti TR S ET, KGR A T
WORA PR TR Ti & (2960 x107°) , £
AT SR IR >650°C , 1 T 45 A 08 S A B Y
Ti & (<5x107°), KW OF 4 i < 450C
(E16),

4.6 EBSD HiEHIHIZEES

Bl BILAS 27 2T F AR 13 K, o4 RL 4 0 BIF 5T 2L K
EBSD %4 F K X 4340 A A AE 7= 4 38 81X 434K
BR PO A B AR R 22 B AR Ll i A 7R R S
AR, I H AT 5 B 4 S UL, PRI R R 8 T
50 A M B RN A A P L B R G R R 2 ) 4%
(CNN) [ EAIE 7347 73k A SO 4R b R SO &5
P AR AT 4325, BT 3k A RE A Ol ik 2R 1R - 5 (AR
FERERE U-Net 2048 43 BT 735, i AR AR 4 B 1 40
Pt FHTR GG BE ) 95% | i i F B ) AT A 2 80U
[T A ) 1 2 ( KAM) 55 8 48 o it ], AR RS
FET IR B2y 98% , 5 HABTT T AHA 4 50 () FHoAth 5
TR b, BRI 7 T Y s R P ERAE TR R Y
KL, 9T 0 45 5 R 0F 9 T 5 204 1 o Rl %) O 485 ) 41
HE T ATHEYE (Ostormujof et al. , 2021)

5 4Zhik

EBSD $ AR AT LAXT B4 b R B R 47 1k 43
BT, %A AR IR AAE T L BB 1 Z T RE M, v 1 F
Iz M M BEERF S, AN (T CPO TR M FA £
(RS 1) S PR ARRAE A I A B &R, T 45 W
B, B 25 A XU, 3 B AR R AR S B 451 F L
B oy HER RS TR Y AR 2 Jy T A7 7E R R
P, X ECHE A i R AR A58 (BT 4R, 2021
SEEAE, 2021) , IF H H B S ORLEE R — ORI 4T
BT 2%, 4y EBSD FUHE 1SR 4 J A B T AR R T
Rk, Bl an 2R R L (B M B2y
Y1) B EBSD WFFEAAFAE G £ I 8L, Bt 25 B o ol 25
HARRAETE AR A B b BERE 1 1948
DA HA R T B AR 4 A, T RLSRAMZ S8 1k
AN JE | T T 44 v L5 R e e A R 1 AR i e
92, 40 300 B AL 3 X F EBSD $7 R 78 R
AU SE R N B EE B2, EBSDEL R ) &
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Fig. 16 Morphological attributes and EBSD projection plots of crystallographic preferred orientation (CPO) in deformed quartz
2023)
LRI IS 5= ST
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a—ribbon quartz CPO; b—polar map of equal area of lower hemisphere of all grains; ¢—polar map of equal area of lower hemisphere of ribbon

('modified from Taylor et al. ,
S c—PR AL

a—PARGZE CPO I3 AR AL, b—2xiRAURLIY T 2 BRAF T AR

AT A S AR A T (CPO) AYTEZS B EBSD 45 R 4% K (BB H Taylor e al. |

2023)

AR d—fP R S

quartz grains; d—EBSD inverse pole map of a region containing ribbon quartz grains (aspect ratio >4, z direction-sample reference frame)
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